Fusion systems with Benson-Solomon components
Henke, Ellen; Lynd, Justin

Publication date: 2018

Document Version
Early version, also known as pre-print

Citation for published version (APA):
ELLEN HENKE AND JUSTIN LYND

Abstract. The Benson-Solomon systems comprise a one-parameter family of simple exotic fusion systems at the prime 2. The results we prove give significant additional evidence that these are the only simple exotic 2-fusion systems, as conjectured by Solomon. We consider a saturated fusion system \(F \) having an involution centralizer with a component \(C \) isomorphic to a Benson-Solomon fusion system, and we show under rather general hypotheses that \(F \) cannot be simple. Furthermore, we prove that if \(F \) is almost simple with these properties, then \(F \) is isomorphic to the next larger Benson-Solomon system extended by a group of field automorphisms. Our results are situated within Aschbacher’s program to provide a new proof of a major part of the classification of finite simple groups via fusion systems. One of the most important steps in this program is a proof of Walter’s Theorem for fusion systems, and our first result is specifically tailored for use in the proof of that step. We then apply Walter’s Theorem to treat the general Benson-Solomon component problem under the assumption that each component of an involution centralizer in \(F \) is on the list of currently known quasisimple 2-fusion systems.

1. Introduction

This paper is situated within Aschbacher’s program to classify a large class of saturated fusion systems at the prime 2, and then use that result to rework and simplify the corresponding part of the classification of the finite simple groups. A saturated fusion system is a category \(F \) whose objects are the subgroups of a fixed finite \(p \)-group \(S \), and whose morphisms are injective group homomorphisms between objects such that certain axioms hold. Each finite group \(G \) leads to a saturated fusion system \(F_S(G) \), where \(S \) is a Sylow \(p \)-subgroup of \(G \) and the morphisms are the conjugation maps induced by elements of \(G \). Fusion systems which do not arise in this fashion are called exotic. While exotic fusion systems seem to be relatively plentiful at odd primes, there is as yet one known family of simple exotic fusion systems at the prime 2. These are the Benson-Solomon fusion systems \(F_{\text{Sol}}(q) \) (\(q \) an odd prime power) whose existence was foreshadowed in the work of Solomon \cite{Sol74} and Benson \cite{Ben98}, and which were later constructed by Levi-Oliver \cite{LO02, LO05} and Aschbacher-Chermak \cite{AC10}. Here for any odd prime power \(q \), the underlying 2-group \(S \) of \(F_{\text{Sol}}(q) \) is isomorphic to a Sylow 2-subgroup of \(\text{Spin}_7(q) \), all involutions in \(F_{\text{Sol}}(q) \) are conjugate, and the centralizer of an involution is isomorphic to the fusion system of \(\text{Spin}_7(q) \).

It has been conjectured by Solomon that the fusion systems \(F_{\text{Sol}}(q) \) are indeed the only simple exotic saturated 2-fusion systems \cite[Conjecture 57.12]{Gui08}. Some recent evidence for Solomon’s conjecture is provided by a project by Andersen, Oliver, and Ventura, who carried out a systematic
computer search for saturated fusion systems over small 2-groups and found that each saturated fusion system over a 2-group of order at most 2^9 is realizable by a finite group. (The smallest Benson-Solomon system is based on a 2-group of order 2^{10}.) Theorems within Aschbacher’s program can be expected to give yet stronger evidence for Solomon’s conjecture, and the results we prove are particularly relevant in this context. In order to explain this, we now summarize a bit more of the background.

The major case distinction in the proof of the classification of finite simple groups is given by the Dichotomy Theorem of Gorenstein and Walter, which partitions the finite simple groups of 2-rank at least 3 into the groups of component type and the groups of characteristic 2-type. A finite group G is said to be of component type if some involution centralizer modulo core in G has a component. Here a component is a subnormal subgroup which is quasisimple (i.e. perfect, and simple modulo its center), and the core $O(C)$ of a finite group C is the largest normal subgroup of C of odd order. The largest and richest collection of simple groups of component type are the simple groups of Lie type in odd characteristic. In the classification of finite simple groups, one proceeds by induction on the group order. Thus, if G is a finite group of component type, one assumes that the components of involution centralizers in G are known, and the objective is then to show that the simple group itself is known. More precisely, one usually assumes that a specific quasisimple group K is given as a component in $C_G(t)/O(C_G(t))$ for some involution t of G, and then tries to show that G is known. We refer to such a task as an involution centralizer problem, or a component problem.

As several involution centralizer problems in 1960s and 1970s gave rise to previously unknown sporadic simple groups, this suggests that solving such problems in fusion systems is a good way to search for new exotic 2-fusion systems. Here, we consider an involution centralizer problem in which the component C in an involution centralizer of F is a Benson-Solomon system, and our main theorems can be viewed as essentially determining the structure of the “subnormal closure” of C in F. Thus, we provide the treatment of a problem that has no analogue in the original classification. The results we prove give additional evidence toward the validity of Solomon’s conjecture, or at least toward the absence of additional exotic systems arising in some direct fashion from the existence of $F_{Sol}(q)$.

Our work is also an important step in Aschbacher’s program. We refer to the survey article [AO16] and the memoir [Asc16] for more details on an outline and first steps of his program. Much of the background material is also motivated and collected in Section 2 which can serve as a detailed guide to the proof of the main theorems here for readers not familiar with the classification program. This material has at its foundation many useful constructions from finite group theory that have been established in the context of saturated fusion systems. In particular, these constructions allow one to speak of centralizers of p-subgroups, normal subsystems, simple fusion systems, quasisimple fusion systems, components, and so on. We refer to the standard reference for those constructions [AKO11].

A saturated 2-fusion system F is said to be of component type if some involution centralizer in F has a component. Aschbacher defines the class of 2-fusion systems of odd type as a certain subclass of the fusion systems of component type. The fusion systems of odd type are further partitioned into those of subintrinsic component type and those of J-component type. The classification of simple fusion systems of subintrinsic component type constitutes the first part of the program. Our first theorem is tailored for use in the proof of Walter’s Theorem [Asc17b], one of the main
steps in the subintrinsic case. We then apply Walter’s Theorem to give a treatment of the general Benson-Solomon component problem in the second main theorem. As a corollary, we show that if \(\mathcal{F} \) is almost simple (that is, the generalized Fitting subsystem \(F^*(\mathcal{F}) \) is simple) and \(\mathcal{F} \) has an involution centralizer with a Benson-Solomon component \(C \cong F_{\text{Sol}}(q^2) \), then \(F^*(\mathcal{F}) \cong F_{\text{Sol}}(q^2) \) with the involution inducing an outer automorphism of \(F^*(\mathcal{F}) \) of order 2.

To state our main theorems in detail, we introduce now some more notation which we explain further in Section 2. Fix a saturated fusion system \(\mathcal{F} \) over the 2-group \(S \). Following Aschbacher, we denote by \(\mathcal{C}(\mathcal{F}) \) the collection of components of centralizers in \(\mathcal{F} \) of involutions in \(S \), roughly speaking. Accordingly, \(\mathcal{F} \) is of component type if \(\mathcal{C}(\mathcal{F}) \) is nonempty. The E-balance Theorem in the form of the Pump-Up Lemma (Section 2.5) allows one to define an ordering on \(\mathcal{C}(\mathcal{F}) \), and thus obtain the notion of a maximal member of \(\mathcal{C}(\mathcal{F}) \). For \(C \in \mathcal{C}(\mathcal{F}) \), we denote by \(I(C) \) the set of involutions \(t \) such that \(C \) is a component of \(C_\mathcal{F}(t) \), roughly speaking, up to replacing \((C,t) \) by a suitable conjugate in \(\mathcal{F} \). Finally a member \(C \in \mathcal{C}(\mathcal{F}) \) is said to be subintrinsic in \(\mathcal{C}(\mathcal{F}) \) if there is \(L \in \mathcal{L}(C) \) such that \(Z(L) \cap I(L) \) is not empty. This means in particular that \(L \) itself is in \(\mathcal{C}(\mathcal{F}) \), as witnessed by some involution in the center of \(L \).

Theorem 1. Fix a saturated fusion system \(\mathcal{F} \) over a 2-group \(S \) and a quasisimple subsystem \(C \) of \(\mathcal{F} \) over a fully \(\mathcal{F} \)-normalized subgroup of \(S \). Assume that \(C \) is a subintrinsic, maximal member of \(\mathcal{C}(\mathcal{F}) \) isomorphic to a Benson-Solomon system. Then \(C \) is a component of \(\mathcal{F} \).

As mentioned above, in the logical structure of Aschbacher’s classification program, Theorem 1 is situated within the proof of Walter’s Theorem for fusion systems [Asc17b]. Walter’s Theorem in particular implies that, if a simple saturated 2-fusion system \(\mathcal{F} \) has a member \(L \in \mathcal{L}(C) \) that is the 2-fusion system of a group of Lie type in odd characteristic and not too small, then either \(\mathcal{F} \) is the fusion system of a group of Lie type in odd characteristic, or \(\mathcal{F} \cong F_{\text{Sol}}(q) \). One assumption of Walter’s Theorem is that each member of \(\mathcal{C}(\mathcal{F}) \) is on the list of currently known quasisimple fusion systems, i.e. either one of the Benson-Solomon systems or a fusion system of a finite simple group.

A simple saturated 2-fusion system with an involution centralizer having a Benson-Solomon component would necessarily be exotic, since involution centralizers in fusion systems of groups are the fusion systems of involution centralizers (see also Lemma 2.49). Because of the subintrinsic hypothesis, Theorem 1 does not rule out the possibility of this happening. However, in Section 7, we apply Walter’s Theorem for fusion systems to solve the general Benson-Solomon component problem assuming that all members of \(\mathcal{C}(\mathcal{F}) \) are on the list of known quasisimple 2-fusion systems.

Theorem 2. Let \(\mathcal{F} \) be a saturated fusion system over the 2-group \(S \). Assume that each member of \(\mathcal{C}(\mathcal{F}) \) is known and that some fixed member \(C \in \mathcal{C}(\mathcal{F}) \) is isomorphic to \(F_{\text{Sol}}(q) \) for some odd prime power \(q \). Then for each \(t \in I(C) \), there exists a component \(D \) of \(\mathcal{F} \) such that one of the following holds.

1. \(D = C \);
2. \(D \cong C, D^t \neq D \), and \(C \) is diagonally embedded in the direct product \(DD^t \) with respect to \(t \); or
3. \(D \cong F_{\text{Sol}}(q^2), t \notin D \), and \(C = C_D(t) \).

The automorphism groups and almost simple extensions of the Benson-Solomon systems were determined in [HL18]. The outer automorphism group of \(F_{\text{Sol}}(q) \) is generated by the class of
an automorphism uniquely determined as the restriction of a standard Frobenius automorphism of Spin_\(\gamma(q)\) to a Sylow 2-subgroup, and each extension of \(\mathcal{F}_{\text{Sol}}(q)\) is uniquely determined by the induced outer automorphism group. So in the situation of Theorem 2(3), for example in the case in which \(\mathcal{F}\) is almost simple, the extension \(D(t)\) is known and is the expected one.

Corollary 3. Let \(\mathcal{F}\) be a saturated fusion system over the 2-group \(S\) such that \(D = \mathcal{F}^\ast(\mathcal{F})\) is simple. Assume that each member of \(\mathfrak{C}(\mathcal{F})\) is known, and that some member \(\mathcal{C} \in \mathfrak{C}(\mathcal{F})\) is isomorphic to \(\mathfrak{F}_{\text{Sol}}(q^2)\) for some odd prime power \(q\). Then \(\mathcal{D}\) is isomorphic to \(\mathfrak{F}_{\text{Sol}}(q^2)\). Moreover, for each \(t \in \mathcal{I}(\mathcal{C})\), we have \(t \notin D\), some conjugate of \(t\) induces a standard field automorphism on \(D\), and \(C_D(t) = C\).

Corollary 3 follows immediately from Theorem 2 and the following proposition, which extends the results of [HL18]. A more precise statement is found in Proposition 2.42 as one of our preliminary results.

Proposition 4. Let \(\mathcal{F}\) be a saturated fusion system over the 2-group \(S\) such that \(\mathcal{F}^\ast(\mathcal{F}) = \mathfrak{F}_{\text{Sol}}(q^2)\). Then, writing \(S_0\) for Sylow subgroup of \(\mathfrak{F}_{\text{Sol}}(q^2)\), all involutions in \(S - S_0\) are \(\mathcal{F}\)-conjugate, and there exists an involution \(t \in S - S_0\) such that \(C_{\mathcal{F}^\ast(\mathcal{F})}(t) \cong \mathfrak{F}_{\text{Sol}}(q^2)\).

We now give an outline of the paper. Section 2 provides the requisite background material, much of it due to Aschbacher, together with motivation coming from the group case and some new lemmas needed later on. The proof of Theorem 1 begins in Section 3, where we show that a subintrinsic maximal Benson-Solomon component is necessarily a standard subsystem in the sense of Section 2.6. When combined with results of Aschbacher in [Asc16], this allows the consideration of a subsystem \(\mathcal{Q}\) which plays the role of the centralizer of \(\mathcal{C}\), and with a little more work shows that the Sylow subgroup \(Q\) of \(\mathcal{Q}\) is either of 2-rank 1 or elementary abelian. Next, in Section 4, we handle the case in which \(Q\) is elementary abelian and prove a lemma regarding the 2-rank 1 case. In Section 5, we handle the case in which \(Q\) is quaternion using Aschbacher’s classification of quaternion fusion packets [Asc17a]. Finally, in Section 6, we handle the cyclic case and complete the proof of Theorem 1. We then prove Theorem 2 in Section 7.

Acknowledgements. The authors would like to thank Michael Aschbacher for providing us with early copies of his preprints on the various steps of the program, and for suggesting Lemma 2.49 to us.

2. Preliminaries

2.1. Local theory of fusion systems.

Throughout let \(\mathcal{F}\) be a saturated fusion system over a finite \(p\)-group \(S\). For general background on fusion systems, in particular for the definition of a saturated fusion system, we refer the reader to [AKO11, Chapter 1]. In addition to the notations introduced there, we will write \(\mathcal{F}^f\) for the set of fully \(\mathcal{F}\)-normalized subgroups of \(S\). Conjugation-like maps will be written on the right and in the exponent. In particular, if \(\mathcal{E}\) is a subsystem of \(\mathcal{F}\) over \(T\) and \(\alpha \in \text{Hom}_{\mathcal{F}}(T, S)\), then \(\mathcal{E}^\alpha\) denotes the subsystem of \(\mathcal{F}\) over \(T^\alpha\) with \(\text{Hom}_{\mathcal{E}^\alpha}(P^\alpha, Q^\alpha) = \{\alpha^{-1} \circ \varphi \circ \alpha : \varphi \in \text{Hom}_{\mathcal{E}}(P, Q)\}\) for all \(P, Q \leq T\).

We recall that, for any subgroup \(X\) of \(S\), we have the normalizer and the centralizer of \(X\) defined. The normalizer \(N_{\mathcal{F}}(X)\) is a fusion subsystem of \(\mathcal{F}\) over \(N_{S}(X)\), and the centralizer \(C_{\mathcal{F}}(X)\) is a fusion subsystem of \(\mathcal{F}\) over \(C_{S}(X)\). These subsystems are not necessarily saturated,
but if X is fully \mathcal{F}-normalized, then $N_{\mathcal{F}}(X)$ is saturated, and if X is fully centralized, then $C_{\mathcal{F}}(X)$ is saturated. Thus, we will often move from a subgroup of S to a fully \mathcal{F}-normalized (and thus fully \mathcal{F}-centralized) conjugate of this subgroup. In this context it will be convenient to use the following notation, which was introduced by Aschbacher.

Notation 2.1. For a subgroup $X \leq S$, denote by $\mathfrak{A}(X)$ the set of morphisms $\alpha \in \text{Hom}_{\mathcal{F}}(N_S(X), S)$ such that $X^\alpha \in \mathcal{F}^\ell$.

Throughout, we will use often without reference that $\mathfrak{A}(X)$ is non-empty for every subgroup X of S. In fact, the following lemma holds.

Lemma 2.2. If $X \leq S$ and $Y \in X^\mathcal{F} \cap \mathcal{F}^\ell$, then there exists $\alpha \in \mathfrak{A}(X)$ with $X^\alpha = Y$.

Proof. See e.g. [AKO11, Lemma I.2.6(c)].

If $x \in S$, then we often write $C_{\mathcal{F}}(x)$, $N_{\mathcal{F}}(x)$ and $\mathfrak{A}(x)$ instead of $C_{\mathcal{F}}(\langle x \rangle)$, $N_{\mathcal{F}}(\langle x \rangle)$ and $\mathfrak{A}(\langle x \rangle)$ respectively. Similarly, we call x fully centralized (fully normalized), if $\langle x \rangle$ is fully centralized (fully normalized respectively). If x is an involution, then the reader should note that $C_{\mathcal{F}}(x) = N_{\mathcal{F}}(\langle x \rangle)$, and x is fully centralized if and only if $\langle x \rangle$ is fully normalized.

Recall that a subgroup T of S is called strongly closed in \mathcal{F} if $P^x \leq T$ for every subgroup $P \leq T$ and every $\varphi \in \text{Hom}_{\mathcal{F}}(P, S)$. The following elementary lemma will be useful later on.

Lemma 2.3. Let T be strongly closed in \mathcal{F} and suppose we are given two \mathcal{F}-conjugate subgroups U and U' of S. If $T \leq N_S(U)$ and U' is fully normalized, then $T \leq N_S(U')$.

Proof. By Lemma 2.2, there exists $\alpha \in \mathfrak{A}(U)$ such that $U^\alpha = U'$. Then, as T is strongly closed, $T = T^\alpha \leq N_S(U)^\alpha \leq N_S(U')$ and this proves the assertion. \qed

A subsystem \mathcal{E} of \mathcal{F} over $T \leq S$ is called normal in \mathcal{F} if \mathcal{E} is saturated, T is strongly closed, $\mathcal{E}^\alpha = \mathcal{E}$ for every $\alpha \in \text{Aut}_{\mathcal{F}}(T)$, the Frattini condition holds, and a certain technical extra property is fulfilled (see [AKO11, Definition I.6.1]). Here the Frattini condition says that, for every $P \leq T$ and every $\varphi \in \text{Hom}_{\mathcal{F}}(P, T)$, there are $\varphi_0 \in \text{Hom}_{\mathcal{E}}(P, T)$ and $\alpha \in \text{Aut}_{\mathcal{F}}(T)$ such that $\varphi = \varphi_0 \circ \alpha$.

Once normal subsystems are defined, there is then a natural definition of a subnormal subsystem. We will need the following lemma.

Lemma 2.4. If \mathcal{E} is a subnormal subsystem of \mathcal{F} over T, then every fully \mathcal{F}-normalized subgroup of T is also fully \mathcal{E}-normalized.

Proof. In the case that \mathcal{E} is normal in \mathcal{F}, this is [Asc08, Lemma 3.4.5]. The general case follows by induction on the length of a subnormal series for \mathcal{E} in \mathcal{F}. \qed
Conversely, given a normal subsystem \mathcal{E} of \mathcal{F} over T and a subgroup P of S, one may construct the product system $\mathcal{E}P$ of \mathcal{F}, which contains \mathcal{E} as a normal subsystem of p-power index. This is a saturated subsystem of \mathcal{F}, and furthermore it is the unique saturated subsystem \mathcal{D} of \mathcal{F} over TP such that $O^p(\mathcal{D}) = O^p(\mathcal{E})$. Note however that the uniqueness of the construction of the product depends on the ambient system \mathcal{F} in which it is defined. See [Asc11, Section 8], and also [Hen13] for a simplified construction of $\mathcal{E}P$. We will use the following definition and two lemmas concerning local subsystems in product systems later in Lemma 7.2.

Definition 2.5. Let \mathcal{F} be a saturated fusion system over a p-group S, and let \mathcal{E} be a normal subsystem of \mathcal{F} over $T \leq S$. Then for any subgroup $P \leq S$ such that $P \in (\mathcal{E}P)^I$, we define $N_\mathcal{E}(P)$ to be the unique normal subsystem of $N_{\mathcal{E}P}(P)$ over $N_T(P)$ of p-power index.

Notice that the above definition makes sense. For if $P \in (\mathcal{E}P)^I$, $N_{\mathcal{E}P}(P)$ is saturated. Moreover, $\hmp(N_{\mathcal{E}P}(P)) \leq \hmp(\mathcal{E}P) \leq T$ and thus $\hmp(N_{\mathcal{E}P}(P)) \subseteq N_T(P)$ with $N_T(P)$ is strongly closed in $N_{\mathcal{E}P}(P)$. So by [AKO11] Theorem I.7.4], there exists a unique normal subsystem of $N_{\mathcal{E}P}(P)$ over $N_T(P)$ of p-power index.

The reader should also note that the definition of $N_\mathcal{E}(P)$ depends on the fusion system \mathcal{F}, since $\mathcal{E}P = (\mathcal{E}P)_{\mathcal{F}}$ depends on \mathcal{F}. We write $N_\mathcal{E}(P)_{\mathcal{F}}$ for $N_\mathcal{E}(P)$ if we want to make clear that we formed $N_\mathcal{E}(P)$ inside of \mathcal{F}. If $p = 2$ and t is an involution, then we write $C_\mathcal{E}(t) = C_\mathcal{E}(t)_{\mathcal{F}}$ for $N_\mathcal{E}(t)$.

Lemma 2.6. Let \mathcal{E} be a normal subsystem of \mathcal{F} over $T \leq S$. If $P \in \mathcal{F}^I$, then $P \in (\mathcal{E}P)^I$ and $N_\mathcal{E}(P)$ is normal in $N_T(P)$.

Proof. Let $P \in \mathcal{F}^I$ and fix and $\mathcal{E}P$-conjugate Q of P with $Q \in (\mathcal{E}P)^I$. By construction of $\mathcal{E}P$, we have $TP = TQ$. Let $\alpha \in \mathfrak{A}(Q)$ with $Q^\alpha = P$. As T is strongly closed, we have $N_T(Q)^\alpha \leq N_T(P)$. So $N_{TP}(Q)^\alpha = N_{TQ}(Q)^\alpha = (N_T(Q)Q)^\alpha \leq N_T(P)P = N_{TP}(P)$. Hence, $|N_{TP}(Q)| \leq |N_{TP}(P)|$. As Q is fully $\mathcal{E}P$-normalized, it follows that P is fully $\mathcal{E}P$-normalized.

By [Hen13, Theorem 1], $O^p(N_{\mathcal{E}P}(P))N_T(P)$ is the unique saturated subsystem \mathcal{D} of $N_{\mathcal{E}P}(P)$ with $O^p(\mathcal{D}) = O^p(N_{\mathcal{E}P}(P))$. Looking at the construction of normal subsystems of p-power index given in [AKO11] Theorem I.7.4], one observes that $O^p(N_{\mathcal{E}}(P)) = O^p(N_{\mathcal{E}P}(P))$. Thus, $O^p(N_{\mathcal{E}P}(P))N_T(P)$ equals $N_\mathcal{E}(P)$. Hence, if $P \in \mathcal{F}^I$, our notation is consistent with the one introduced by Aschbacher in [Asc11] 8.24], where it is proved that $N_\mathcal{E}(P)$ is normal in $N_T(P)$. □

Lemma 2.7. Let \mathcal{E} be a normal subsystem of \mathcal{F} over $T \leq S$. Fix $P \leq S$ such that $P \in (\mathcal{E}P)^I$, and let $\varphi \in \text{Hom}_\mathcal{F}(N_T(P), P, S)$. Then $P^\varphi \in (\mathcal{E}P)^I$, $N_T(P)^{\varphi} = N_T(P^\varphi)$ and $\varphi|_{N_T(P)}$ induces an isomorphism from $N_\mathcal{E}(P)$ to $N_\mathcal{E}(P^\varphi)$.

Proof. It is sufficient to show that $(N_T(P)^{\varphi}) = N_T(P^\varphi)$ and $N_{\mathcal{E}P}(P)^{\varphi} = N_{\mathcal{E}P}(P^\varphi)$ for all $\varphi \in (\mathcal{E}P)^I$. If this is true then, as T is strongly closed, $N_T(P)^{\varphi} = N_T(P^\varphi)$. So, since φ induces an isomorphism from $N_{\mathcal{E}P}(P)$ to $N_{\mathcal{E}P}(P^\varphi)$, it will take the unique normal subsystem of $N_{\mathcal{E}P}(P)$ over $N_T(P)$ of p-power index to the unique normal subsystem of $N_{\mathcal{E}P}(P^\varphi)$ over $N_T(P^\varphi)$ of p-power index.

By [Asc16 1.3.2], we have $\mathcal{F} = \langle \mathcal{E}S, N_\mathcal{F}(T) \rangle$. Hence, it is sufficient to prove the claim in the case that φ is a morphism in $N_\mathcal{F}(T)$ or a morphism in $\mathcal{E}S$.

If φ is a morphism in $N_\mathcal{F}(T)$, then φ extends to $\alpha \in \text{Hom}_\mathcal{F}(TP, TP^\varphi)$ with $T^\alpha = T$. Notice that $P^\alpha = P^\varphi$, and $\alpha: TP \to TP^\varphi$ is an isomorphism of groups, which induces by the construction of $\mathcal{E}P$ and $\mathcal{E}P^\varphi$ in [Hen13] an isomorphism from $\mathcal{E}P$ to $\mathcal{E}P^\varphi$. So $P^\varphi = P^\alpha \in (\mathcal{E}P^\varphi)^I$ and
\[\varphi = \alpha|_{N_T(P)P} \] induces an isomorphism from \(N_{E}(P) \) to \(N_{E\varphi}(P\varphi) \). Hence, the assertion holds if \(\varphi \) is a morphism in \(N_{T}(T) \).

Assume now that \(\varphi \) is a morphism in \(E S \). By the construction of \(E S \) and \(E P \) in [Hen13], \(\varphi \) is the composition of a morphism in \(E P \) and a morphism in \(F S(S) \). As \(F S(S) \subseteq N_{T}(T) \) and the assertion holds if \(\varphi \) is a morphism in \(N_{T}(T) \), we may thus assume without loss of generality that \(\varphi \) is a morphism in \(E P \). However, then \(TP = TP\varphi \), \(E P = E P\varphi \) and it follows from \(P \in (E P)^{f} \) that \((N_{T}(P)P)^{\varphi} = N_{T}TP(P)^{\varphi} = N_{T}(P\varphi)^{P\varphi} \). So \(\varphi \) induces an isomorphism from \(N_{E}(P) \) to \(N_{E}(P\varphi) = N_{E}(P\varphi) \). So the assertion holds if \(\varphi \) is a morphism in \(E S \). As argued above, this shows that the lemma holds. \(\square \)

2.2. Automorphisms and extensions of fusion and linking systems. At several points, we will need to be able to construct various extensions of fusion systems and to determine the structure of extensions where they arise. For example, if \(F \) is a saturated fusion system over \(S \) and \(E \) is a normal subsystem of \(F \), then we want to be able to construct certain subsystems of \(F \) containing \(E \) and determine their structure from the structure of \(E \). In the category of groups, this is a relatively painless process when the normal subgroup is quasisimple. However, in fusion systems there are technical difficulties that necessitate in many cases the consideration of linking systems associated to \(F \) and \(E \).

We refer to [AKO11] Section III.4 or [AOV12] for the definition of an abstract linking system as used here, and for more details on automorphisms of fusion and linking systems. Fix a linking system \(L \) for \(F \) with object set \(\Delta \) and structural functors \(\delta \) and \(\pi \), which we write on the left of their arguments. The group of automorphisms of \(F \) is defined by

\[\text{Aut}(F) = \{ \alpha \in \text{Aut}(S) \mid F^\alpha = F \}. \]

Then \(\text{Aut}_{F}(S) \) is normal in \(\text{Aut}(F) \), and the quotient \(\text{Aut}(F)/\text{Aut}_{F}(S) \) is denoted \(\text{Out}(F) \).

An automorphism of \(L \) is an equivalence \(\phi : L \to L \) that is both isotypical and sends inclusions to inclusions. Since we do not use those conditions explicitly, we refer to [AKO11] Section III.4] for their precise meanings. Each automorphism of \(L \) is indeed an automorphism of the category \(L \), not merely a self-equivalence. We shall write \(\text{Aut}(L) \) for the group of automorphisms of \(L \). There is always a conjugation map

\[c : \text{Aut}_{L}(S) \to \text{Aut}(L) \]

which sends an element \(\gamma \in \text{Aut}_{L}(S) \) to the functor \(c_{\gamma} \in \text{Aut}(L) \) defined on objects by \(P \mapsto P^\gamma := P^{\pi(\gamma)} \). For a morphism \(\varphi \in \text{Mor}(P,R) \), the map \(c \) sends \(\varphi \) to \(\varphi^\gamma \), namely the morphism

\[\varphi^\gamma := \gamma^{-1}|_{P^\gamma,P} \circ \varphi \circ \gamma|_{R,R^\gamma} \in \text{Mor}(P^\gamma,R^\gamma), \]

where, for example, \(\gamma|_{R,R^\gamma} \) is the restriction of \(\gamma \), uniquely determined by the condition that \(\delta_{R,S}(1) \circ \gamma = \gamma|_{R,R^\gamma} \circ \delta_{R^\gamma,S}(1) \) in \(L \). The image of \(c \) in \(\text{Aut}(L) \) is a normal subgroup of \(\text{Aut}(L) \), and

\[\text{Out}(L) := \text{Aut}(L)/\{c_{\gamma} \mid \gamma \in \text{Aut}_{L}(S)\} \]

is the group of outer automorphisms of \(L \).
There are natural maps \(\tilde{\mu} : \Aut(L) \to \Aut(F) \) and \(\mu : \Out(L) \to \Out(F) \) which, at least when \(\Delta = F^c \), fit into a commutative diagram

\[
\begin{array}{ccccccccc}
1 & 1 & 1 & \\
\downarrow & \downarrow & \downarrow & \\
Z(F) \xrightarrow{\text{incl}} Z(S) & \xrightarrow{\delta_S} \tilde{Z}^1(O(F^c), Z_F) & \xrightarrow{\lambda} \lim^1(Z_F) & \xrightarrow{\lambda} 1 \\
\downarrow & \downarrow & \downarrow & \\
Z(F) & \xrightarrow{c} \Aut_L(S) & \xrightarrow{\pi_S} \Aut(F) & \xrightarrow{\mu} 1 \\
\downarrow & \downarrow & \downarrow & \\
1 & \xrightarrow{\tilde{\mu}} \Aut(F) & \xrightarrow{\mu} 1 \\
\end{array}
\]

(2.8)

with all rows and columns exact. Here, \(\tilde{Z}^1(O(F^c), Z_F) \) is a group of 1-cocycles of the center functor defined on the orbit category of \(F \)-centric subgroups, and \(\lim^1 Z_F \) is the corresponding cohomology group; see [AKO11, Section III.5].

Lemma 2.9. Let \(F \) be a saturated fusion system over \(S \) with associated centric linking system \(L \), and suppose that \(\mu : \Out(L) \to \Out(F) \) is injective. Then \(\ker(\tilde{\mu}) = \{ c_\delta_S(z) \mid z \in Z(S) \} \) consists of automorphisms of \(L \) induced by conjugation by elements of \(Z(S) \).

Proof. By assumption on \(\mu \), we see from (2.8) that \(\lim^1(Z_F) = 0 \) by the exactness of the third column. The assertion follows from exactness of the top row (2.8), together with commutativity of the square containing \(Z(S) \) and \(\Aut(L) \). \(\square \)

In the situation where \(F \) is realized by a finite group \(G \) with Sylow subgroup \(S \), there are maps which compare certain automorphism groups of \(G \) with the automorphism groups of \(L \) and \(F \). For example, there is a group homomorphism \(\tilde{\kappa}_G : \Aut(G, S) \to \Aut(L) \), where \(\Aut(G, S) \) is the subgroup of \(\Aut(G) \) consisting of those automorphisms which normalize \(S \). Then \(\tilde{\kappa}_G \) sends the image of \(N_G(S) \) to \(\Im(c) \leq \Aut(L) \), and so induces a homomorphism \(\kappa : \Out(G) \to \Out(L) \).

Definition 2.10. A finite group \(G \) with Sylow subgroup \(S \) is said to tamely realize \(F \) if \(F \cong F_S(G) \) and the map \(\kappa : \Out(G) \to \Out(L) \) is split surjective. The fusion system \(F \) is said to be tame if it is tamely realized by some finite group.

From work of Andersen-Oliver-Ventura and Broto-Møller-Oliver, the fusion systems of all finite simple groups at all primes are now known to be tamely realized by some finite group [AO16, Section 3.3]. To give one example of the importance of tameness for getting a hold of extensions of fusion systems of finite quasisimple groups, we mention the following result of Oliver that will be useful later.

Theorem 2.11. Let \(F \) be a saturated fusion system over the finite \(p \)-group \(S \) and let \(E \) be a normal subsystem over the subgroup \(T \leq S \). Assume that \(F^*(F) = O_p(F)E \) with \(E \) quasisimple and that \(E \) is tamely realized by the finite group \(H \). Then \(F \) is tamely realized by a finite group \(G \) such that \(F^*(G) = O_p(G)H \).
Proof. This is Corollary 2.5 of [Oli16]. □

2.3. Components and the generalized Fitting subsystem. Aschbacher [Asc11] Chapter 9 introduced components and the generalized Fitting subsystem $F^*(\mathcal{F})$ of \mathcal{F}. By analogy with the definition for groups, a component is a subnormal subsystem of \mathcal{F} which is quasisimple. Here \mathcal{F} is called quasisimple if $O^p(\mathcal{F}) = \mathcal{F}$ and $\mathcal{F}/Z(\mathcal{F})$ is simple. By [Asc11] 9.8.2, 9.9.1, the generalized Fitting subsystem of \mathcal{F} is the central product of $O_p(\mathcal{F})$ and the components of \mathcal{F}. Moreover, for every set J of component of \mathcal{F}, there is a well-defined subsystem $\Pi_{C \in J} C$, which is the central product of the components in J. Writing $E(\mathcal{F})$ for the central product of all components of \mathcal{F}, $F^*(\mathcal{F})$ is the central product of $O_p(\mathcal{F})$ with $E(\mathcal{F})$. We will use the following lemma.

Lemma 2.12. If C is a component of \mathcal{F} over T then the following hold:

(a) C is normal in $F^*(\mathcal{F})$.
(b) If $\gamma \in \text{Hom}_\mathcal{F}(T, S)$, then C^γ is a component \mathcal{F}.

Proof. By definition of a component, C is subnormal and thus saturated. As mentioned above, by [Asc11] 9.8.2, 9.9.1, $F^*(\mathcal{F})$ is the central product of $O_p(\mathcal{F})$ (more precisely $\mathcal{F}_{O_p(\mathcal{F})}(O_p(\mathcal{F}))$) and the components of \mathcal{F}. It is elementary to check that each of the central factors in a central product of saturated fusion systems is normal. Hence, every component of \mathcal{F} is normal in $F^*(\mathcal{F})$ and (a) holds.

For the proof of (b) let $S_0 \leq S$ such that $F^*(\mathcal{F})$ is a fusion system over S_0. The Frattini condition (applied to the normal subsystem $F^*(\mathcal{F})$) says that we can factorize γ as $\gamma = \gamma_0 \circ \alpha$ with $\gamma_0 \in \text{Hom}_{F^*(\mathcal{F})}(T, S_0)$ and $\alpha \in \text{Aut}_\mathcal{F}(S_0)$. By (a), $C^{\gamma_0} = C$ and thus $C^\gamma = C^\alpha$. As $F^*(\mathcal{F})$ is a normal subsystem, α induces an automorphism of $F^*(\mathcal{F})$. Thus, C^α is normal in $F^*(\mathcal{F})$ as C is normal in $F^*(\mathcal{F})$. So $C^\gamma = C^\alpha$ is subnormal in \mathcal{F}. Hence, C^γ is a component of \mathcal{F}, since $C^\gamma \cong C$ is quasisimple.

Lemma 2.13. Let \mathcal{F} be a saturated fusion system which is the central product of saturated subsystems $\mathcal{F}_1, \ldots, \mathcal{F}_n$. If C is a component of \mathcal{F}, then there exists $i \in \{1, 2, \ldots, n\}$ such that C is a component of \mathcal{F}_i.

Proof. Assume that C is a component of \mathcal{F} which, for all $i = 1, \ldots, n$, is not a component of \mathcal{F}_i. Let \mathcal{C} be a subsystem on $T \leq S$, and let \mathcal{F}_i be a subsystem on S_i for $i = 1, \ldots, n$. Since \mathcal{F} is the central product of $\mathcal{F}_1, \ldots, \mathcal{F}_n$, each of the subsystems $\mathcal{F}_1, \ldots, \mathcal{F}_n$ is normal in \mathcal{F}. So for each $i = 1, \ldots, n$, it follows from [Asc11] 9.6 and the assumption that C is not a component of \mathcal{F}_i that T centralizes S_i. As $S = \Pi_{i=1}^n S_i$, this yields that T centralizes S and is thus abelian. Now [Asc11] 9.1 yields a contradiction to C being quasisimple. □

2.4. Components of involution centralizers. Suppose now that \mathcal{F} is a saturated fusion system over a 2-group S. If \mathcal{F} is of component type, then in analogy to the group theoretical case, one wants to work with components of involution centralizers (or more generally with components of normalizers of subgroups of S). In fusion systems, the situation is slightly more complicated than in groups, since only components of saturated fusion systems are defined. Therefore, we can only consider components of normalizers of fully normalized subgroups. It makes sense to work also with conjugates of such components. Following Aschbacher [Asc16], Section 6] we will use the following notation.

Notation 2.14. If C is a quasisimple subsystem of \mathcal{F} over T, then define the following sets:
\begin{itemize}
 \item $\mathcal{X}(C)$ is the set of subgroups or elements X of $C_S(T)$ such that $C_F(X)$ contains C.
 \item $\tilde{\mathcal{X}}(C)$ is the set of subgroups or elements X of S such that C^α is a component of $N_F(X^\alpha)$ for some $\alpha \in \mathfrak{A}(X)$.
 \item $\mathcal{I}(C)$ is the set of involutions in $\tilde{\mathcal{X}}(C)$.
\end{itemize}

If we want to stress that these sets depend on F, we write $\mathcal{X}_F(C)$, $\tilde{\mathcal{X}}_F(C)$ and $\mathcal{I}_F(C)$ respectively. Moreover, we write $\mathcal{C}(F)$ for the set of quasisimple subsystems C of F such that $\mathcal{I}(C)$ is nonempty.

Lemma 2.15. Let C be a quasisimple subsystem of F over T and $X \in \tilde{\mathcal{X}}(C)$. Then for any $\varphi \in \text{Hom}_F([X,T], S)$ the following hold:

(a) If $X^\varphi \in \mathcal{F}^I$, then C^φ is a component of $N_F(X^\varphi)$.

(b) We have $X^\varphi \in \tilde{\mathcal{X}}(C^\varphi)$.

Proof. Assume first $X^\varphi \in \mathcal{F}^I$. Let $\alpha \in \mathfrak{A}(X)$ such that C^α is a component of $N_F(X^\alpha)$. By Lemma 2.2, there exists $\beta \in \mathfrak{A}(X^\alpha)$ such that $X^{\alpha \beta} = X^\varphi$. Then $N_S(X^\alpha)^\beta = N_S(X^\varphi)$ and β induces an isomorphism from $N_F(X^\alpha)$ to $N_F(X^\varphi)$. So $C^\alpha\beta$ is a component of $N_F(X^\varphi)$. As $X^{\alpha \beta} = X^\varphi$, the map $\beta^{-1}\alpha^{-1}\varphi$ is a morphism in $N_F(X^\varphi)$. Moreover $C^\alpha\beta$ is conjugate to C^β under $\beta^{-1}\alpha^{-1}\varphi$. Thus, C^φ is a component of $N_F(X^\varphi)$ by Lemma 2.12. This proves (a). If we drop the assumption that $X^\varphi \in \mathcal{F}^I$ and pick $\alpha \in \mathfrak{A}(X^\varphi)$, then applying (a) with $\varphi\alpha$ in place of φ gives that $(C^\varphi)^\alpha = C^{\varphi\alpha}$ is a component of $N_F(X^{\varphi\alpha})$. This gives (b). \□

Lemma 2.16. Let C be a quasisimple subsystem of F over T and let $X \in \tilde{\mathcal{X}}(C)$ be a subgroup of S. Suppose we are given $Y \in \mathcal{F}^I$ satisfying $[X,Y] \leq X \cap Y$ and $C \subseteq N_F(Y)$. Then $X \in \tilde{\mathcal{X}}_{N_F(Y)}(C)$.

In particular, if X has order 2, then $C \in \mathcal{C}(N_F(Y))$.

Proof. Let $\beta \in \mathfrak{A}_{N_F(Y)}(X)$ so that $X^\beta \in N_F(Y)^I$. Let $\alpha \in \mathfrak{A}(X^\beta)$. Then by [Asc10 2.2.1.2.2.2], we have that $Y^\alpha \in N_F(X^{\beta\alpha})^I$, $N_S(Y) \cap N_S(X^{\beta\alpha}) = N_S(Y^\alpha) \cap N_S(X^{\beta\alpha})$, and α induces an isomorphism from $N_{N_F(Y)}(X^\beta)$ to $N_{N_F(X^{\beta\alpha})}(Y^\alpha)$. By Lemma 2.15(a), we have that $C^{\beta\alpha}$ is a component of $N_F(X^{\beta\alpha})$. So by [Asc16 2.2.5.2], $C^{\beta\alpha}$ is a component of $N_{N_F(X^{\beta\alpha})}(Y^\alpha)$. As α induces an isomorphism from $N_{N_F(Y)}(X^\beta)$ to $N_{N_F(X^{\beta\alpha})}(Y^\alpha)$, this implies that C^β is a component of $N_{N_F(Y)}(X^\beta)$. This proves $X \in \tilde{\mathcal{X}}_{N_F(Y)}(C)$ and the assertion follows. \□

2.5. **Pumping up.** Crucial in the classification of finite simple groups of component type is the Pump-Up Lemma, which leads to the definition of a maximal component. As we explain in more detail in the next subsection, such maximal components have very nice properties generically, which ultimately allow one to pin down the group if the structure of a maximal component is known.

The main purpose of this section is to state the Pump-Up Lemma for fusion systems. However, to give the reader an intuition, we briefly want to describe the Pump-Up Lemma for groups. Let G be a finite group. To avoid technical difficulties which do not play a role in the context of fusion systems, we assume that none of the 2-local subgroups of G has a normal subgroup of odd order. The results we state here are actually true for all almost simple groups, but to show this one would have to use the B-theorem whose proof is extremely difficult. Avoiding the necessity to prove the B-theorem is one of the major reasons why it is hoped that working in the category of fusion systems will lead to a simpler proof of the classification of finite simple groups.

Let t be an involution of G. If $O(G) = 1$, then the L-balance theorem of Gorenstein and Walter gives that $E(C_G(t)) \leq E(G)$, where $E(G)$ denotes the product of the components of G. Further
analysis shows that a component C of $C_G(t)$ lies in $E(G)$ in a particular way. Namely, either C is a component of G, or there exists a component D of G such that $D = D'$ and C is a component of $C_D(t)$, or there exists a component D of G such that $D \neq D'$ and $C = \{dd' : d \in D\}$ is the homomorphic image of D under the map $d \mapsto dd'$. If one applies this property to the centralizer of a suitable involution a rather than to the whole group G, then one obtains the Pump-Up Lemma. More precisely, consider two commuting involutions t and a centralized by a quasisimple subgroup C which is a component of $C_G(t)$, and thus of $C_{C_G(a)}(t)$. The result stated above yields immediately that one of the following holds:

1. C is a component of $C_G(a)$.
2. There exists a component D of $C_G(a)$ such that $D = D'$ and C is a component of $C_D(t)$.
3. There exists a component D of $C_G(a)$ such that $D \neq D'$ and $C = \{dd' : d \in D\}$ is a homomorphic image of D.

This statement is known as the Pump-Up Lemma. If (2) holds then D is called a proper pump-up of C. The component C is called maximal if it has no proper pump-ups.

We now state a similar result for fusion systems, which was formulated by Aschbacher. Again, the statement is slightly more complicated than the statement for groups, since we need to pass from an involution a to a fully centralized conjugate of a for the centralizer to be saturated.

Lemma 2.17 ([Asc16] 6.1.11). Let F be a saturated fusion system over a 2-group S and let C be a quasisimple subsystem of F on T. Suppose we are given two commuting involutions $t, a \in S$ such that $t \in I(C)$ and $(t, a) \in \mathcal{X}(C)$. Fix $\alpha \in \mathcal{A}(a)$. Set $\bar{a} = a^\alpha$, $\bar{t} = t^\alpha$ and $\bar{C} = C^\alpha$. Then one of the following holds:

1. (trivial) \bar{C} is a component of $C_F(\bar{a})$, so $a \in I(C)$,
2. (proper) there is $\zeta \in \text{Hom}_{C_F(\bar{a})}(C_S(\bar{a}, \bar{t}), C_S(\bar{a}))$ and a \bar{t}-invariant component D of $C_F(\bar{a})$ such that \bar{C}^ζ is a component of $C_D(\bar{t})$, and we have $\bar{C}^\zeta \neq D$,
3. (diagonal) there is a component D of $C_F(\bar{a})$ such that $D \neq D'$, $\bar{C} \leq D_0 := DD'$, and C is a homomorphic image of D.

Definition 2.18. Let F be a saturated 2-fusion system and $C \in \mathcal{C}(F)$.

- Whenever the hypotheses of Lemma 2.17 occur, and D satisfies (2) of the conclusion, then D is a proper pump-up of C.
- C is called maximal (or a maximal component) if it has no proper pump-ups.

2.6. Standard components. We explain now in more detail how maximal components play a role in pinning down the structure of a finite simple group G, and in how far these ideas carry over to fusion systems. As in the previous subsection, we start by explaining the basic ideas for groups. For that, assume again that G is a finite group in which no involution centralizer has a non-trivial normal subgroup of odd order.

Write $\mathcal{C}(G)$ for the set of components of involution centralizers of G. Using the Pump-Up Lemma, one can choose $C \in \mathcal{C}(G)$ such that every element $D \in \mathcal{C}(G)$ which maps homomorphically onto C is maximal. For such C, Aschbacher’s component theorem says basically that, with some “small” exceptions, either C is a homomorphic image of a component of G, or the following two conditions hold:

(C1′) C does not commute with any of its conjugates; and
(C2') if t is an involution centralizing C, then C is a component of $C_G(t)$.

Assuming that (C1') and (C2') hold and $C/Z(C)$ is a “known” finite simple group, the structure of G is determined case by case from the structure of C. The problem of classifying G from the structure of such a subgroup C is usually referred to as a standard form problem. The key to solving such a standard form problem is that properties (C1') and (C2') imply that the centralizer $C_G(C)$ is a tightly embedded subgroup of G and thus has (by various theorems in the literature) a very restricted structure if G is simple. Here a subgroup K of G of even order is called tightly embedded in G if $K \cap K^g$ has odd order for any element $g \in G - N_G(K)$. A standard subgroup of G is a quasisimple subgroup C of G such that C commutes with none of its conjugates, $K := C_G(C)$ is tightly embedded in G, and $N_G(C) = N_G(K)$. If C is a component of an involution centralizer which satisfies properties (C1') and (C2'), then it is straightforward to prove that C is a standard subgroup. So if G is simple, then with some small exceptions, Aschbacher’s component theorem implies that there exists a standard subgroup C of G.

We will now explain the theory of standard components of fusion systems, which Aschbacher [Asc16] has developed roughly in analogy to the situation for groups as far as this seems possible. For the remainder of this subsection let \mathcal{F} be a saturated fusion system over a 2-group S, and let \mathcal{C} be a quasisimple subsystem of \mathcal{F} on T. The situation for fusion systems is significantly more complicated, most importantly since the definition of a standard component of a group involves a statement about its centralizer, and the centralizer of \mathcal{C} in \mathcal{F} is currently only defined in certain special cases. For example, Aschbacher has defined the normalizer and the centralizer of a component of a fusion system [Asc16, Sections 2.1 and 2.2]. In particular, if \mathcal{C} is a component of $C_{\mathcal{F}}(t)$ for a fully centralized involution t, then $C_{\mathcal{C}}(t)(\mathcal{C})$ is defined inside $C_{\mathcal{F}}(t)$. If $\mathcal{C} \in \mathfrak{C}(\mathcal{F})$, then this allows us to define a subgroup of S which centralizes \mathcal{C}, dependent on an involution $t \in \mathcal{I}(\mathcal{C})$.

Notation 2.19 (cf. (6.1.15) in [Asc16]). If $t \in \mathcal{I}(\mathcal{C})$ and $\alpha \in \mathfrak{A}(t)$, then define

$$P_{t,\alpha} := C_{\mathcal{C}}(t^\alpha)(\mathcal{C}^\alpha) \cap C_S(t^\alpha)$$

and

$$Q_t := Q_{t,\alpha} = P_{t,\alpha}^{\alpha^{-1}}$$

By [Asc16] 6.6.16.1, $Q_{t,\alpha} \leq C_S(t)$ is independent of the choice of α and so Q_t is indeed well-defined. With this definition in place, one can formulate conditions on \mathcal{C} which roughly correspond to conditions (C1') and (C2'). If $\mathcal{C} \in \mathfrak{C}(\mathcal{F})$ fulfills such conditions, then \mathcal{C} is called *terminal*. The precise definition is given below in Definition 2.21.

Notation 2.20 (cf. (6.1.17) and (6.2.7) in [Asc16]).

- $\Delta(\mathcal{C})$ is the set of \mathcal{F}-conjugates \mathcal{C}_1 of \mathcal{C} such that, writing T_1 for the Sylow of \mathcal{C}_1, we have $T_1^\# \subseteq \tilde{\chi}(\mathcal{C})$ and $T^\# \subseteq \tilde{\chi}(\mathcal{C}_1)$.
- $\rho(\mathcal{C})$ is the set of pairs $(t^\varphi, \mathcal{C}^\varphi)$ such that $t \in \mathcal{I}(\mathcal{C})$ and $\varphi \in \text{Hom}_\mathcal{F}((t, T), S)$.
- $\rho_0(\mathcal{C})$ is the set of $(t_1, \mathcal{C}_1) \in \rho(\mathcal{C})$ such that all nonidentity elements of Q_{t_1} lie in $\tilde{\chi}(\mathcal{C}_1)$.

By Lemma 2.15(b), we have $t_1 \in \mathcal{I}(\mathcal{C}_1)$ for any $(t_1, \mathcal{C}_1) \in \rho(\mathcal{C})$. In particular, in the definition of $\rho_0(\mathcal{C})$, the subgroup Q_{t_1} is well-defined.

Definition 2.21. A subsystem $\mathcal{C} \in \mathfrak{C}(\mathcal{F})$ is called *terminal* if the following conditions hold:
(C0) $T \in \mathcal{F}^f$,
(C1) $\Delta(\mathcal{C}) = \emptyset$, and
(C2) $\rho(\mathcal{C}) = \rho_0(\mathcal{C})$.

In this definition, property (C2) corresponds roughly to property (C2') above. Moreover, assuming (C2), property (C1) should be thought of as roughly corresponding to property (C1') above.

Aschbacher proved a version of his component theorem for fusion systems [Asc16, Theorem 8.1.5]. Suppose $\mathcal{C} \in \mathcal{C}(\mathcal{F})$ is such that every $D \in \mathcal{C}(\mathcal{F})$ mapping homomorphically onto \mathcal{C} is maximal. The component theorem for fusion systems states essentially that, with some small exceptions, either \mathcal{C} is the homomorphic image of a component of \mathcal{F}, or \mathcal{C} is terminal. This statement is similar to the statement of the component theorem in the group case. However, it is not clear that the centralizer of a terminal component is defined and “tightly embedded” in \mathcal{F}. This makes it more complicated to define standard subsystems. We will work with Aschbacher’s definition of a standard subsystem, which we state next.

Definition 2.22. The quasisimple subsystem \mathcal{C} of \mathcal{F} is called a standard subsystem of \mathcal{F} if the following four conditions are satisfied:

(S1) $\bar{X}(\mathcal{C})$ contains a unique (with respect to inclusion) maximal member Q.
(S2) For each $1 \neq X \leq Q$ and $\alpha \in \mathfrak{A}(X)$, we have $C^\alpha \leq N_\mathcal{F}(X^\alpha)$.
(S3) If $1 \neq X \leq Q$ and $\beta \in \mathfrak{A}(X)$ with $X^\beta \leq Q$, then $T^\beta = T$.
(S4) $\text{Aut}_\mathcal{F}(T) \leq \text{Aut}(\mathcal{C})$.

If \mathcal{C} satisfies conditions (S1),(S2),(S3), then \mathcal{C} is called nearly standard.

Remark 2.23. In the above definition, the first condition (S1) says essentially that the centralizer of \mathcal{C} in S is well-defined. Namely, the unique maximal member Q of $\bar{X}(\mathcal{C})$ should be thought of as this centralizer. Given a standard subsystem \mathcal{C} of \mathcal{F}, this allows Aschbacher [Asc16, Definition 9.1.4] to define a saturated subsystem Q of \mathcal{F} over Q which plays the role of the centralizer of \mathcal{C} in \mathcal{F}. More precisely, Q centralizes \mathcal{C} in the sense that \mathcal{F} contains a subsystem which is a central product of Q and \mathcal{C} (cf. [Asc16 9.1.6.1]). Also, by [Asc16 9.1.6.2], Q is a tightly embedded as defined in the next subsection (cf. Definition 2.28). We will refer to Q as the centralizer of \mathcal{C} in \mathcal{F}.

In general, it is difficult to get control of $C_S(T)$ when T is the Sylow subgroup of a member \mathcal{C} of $\mathcal{C}(\mathcal{F})$. However, $C_S(T) \leq N_S(Q)$ when \mathcal{C} is standard. This inclusion gives much needed leverage, as is shown in Lemma 2.26 below. Since the method of proof of that lemma is more widely applicable, we next state and prove a more general result which we feel is of independent interest. In the proof of Proposition 2.24, we reference a normal pair of linking systems $\mathcal{L} \trianglelefteq \mathcal{L}_1$ as defined in [AOVT12, Definition 1.27]. Also, we take the opportunity to write certain maps on the left-hand side of their arguments.

Proposition 2.24. Let \mathcal{F} be a saturated fusion system over the 2-group S, and let \mathcal{F}_1 be a saturated subsystem over $S_1 \leq S$. Assume that \mathcal{C} is a perfect normal subsystem of \mathcal{F}_1 over $T \in \mathcal{F}^f$ having associated centric linking system \mathcal{L} such that

(i) $C_S(T) \leq S_1$, and
(ii) $\mu: \text{Out}(\mathcal{L}) \to \text{Out}(\mathcal{C})$ is injective (see Section 2.2).
Then $C_S(T) = C_{S_1}(C)Z(T)$.

Proof. By assumption, C is normal in F_1, so we may form the product system $C_1 := CS_1$ in this normalizer, as in [Asc11] Chapter 8 or [Hen13]. Then $O^2(C_1) = O^2(C) = C$ since C is perfect, so by [AOV12] Proposition 1.31(a)], there is a normal pair of linking systems $L \leq L_1$ associated to the pair $C \leq C_1$ in which $\text{Ob}(L_1) = \{P \leq S_1 \mid P \cap T \in C\}$. Note that not only is L is a subcategory of L_1, but the structural functors δ, π for L are the restrictions of the functors for L_1 by definition of an inclusion of linking systems. Because of this, we write δ, π also for the structural functors for L_1.

Now by the definition of a normal pair of linking systems [AOV12] Definition 1.27(iii)], the conjugation map $c: \text{Aut}(L) \to \text{Aut}(L)$ lifts to a map $\text{Aut}(L_1(T)) \to \text{Aut}(L)$, which we also denote by c. So the existence of the pair $L \leq L_1$ allows one to define a homomorphism $\nu: S_1 \to \text{Aut}(L)$ given by the composition $S_1 \xrightarrow{\delta T} \text{Aut}(L_1(T)) \xrightarrow{\pi} \text{Aut}(L)$. This map has kernel

$$\ker(\nu) = C_{S_1}(C)$$

by [Sem15] Theorem A.

We can now prove the assertion. Clearly $C_{S_1}(C)Z(T) \subseteq C_S(T)$. For the reverse inclusion, fix $s \in C_S(T)$. Then ν is defined on s by (i). The map $\tilde{\mu}: \text{Aut}(L) \to \text{Aut}(C)$ is more precisely defined by the equation $\tilde{\mu}(\varphi) = \delta_T^{-1}(\delta_T(\varphi)\delta_T)$ for all $\varphi \in \text{Aut}(L)$ and all $t \in T$. Using this for $\varphi = \nu(s) = c_{\delta_T}(s)$, we obtain for all $t \in T$ that $\tilde{\mu}(\nu(s)) = \delta_T^{-1}\delta_T^{-1}(\delta_T(s)^{-1} \circ \delta_T(t) \circ \delta_T(s)) = \delta_T^{-1}(\delta_T(t^s)) = t^s = t$, where the last equality uses $s \in C_S(T)$. The automorphism $\tilde{\mu}(\nu(s)) \in \text{Aut}(C)$ is thus trivial. Hence by Lemma 2.9 and assumption on μ, $\nu(s) = c_{\delta_T}(z) = \nu(z)$ for some $z \in Z(T)$. It follows that $\nu(sz^{-1})$ is the identity on L. Hence, $sz^{-1} \in C_{S_1}(C)$ by (2.25), so $s \in C_{S_1}(C)Z(T)$, which completes the proof.

Lemma 2.26. Let F be a saturated fusion system over the 2-group S. Suppose C is a standard subsystem of F with centralizer Q over Q. Let L be a centric linking system associated to C. If $\mu: \text{Out}(L) \to \text{Out}(C)$ is injective, then $C_S(T) = QZ(T)$.

Proof. As Q is fully F-normalized by [Asc16] 9.1.1], $F_1 := N_F(Q)$ is a saturated fusion system over $S_1 = N_S(Q)$. Further, (S2) says that C is normal in F_1. Finally, by [Asc16] Proposition 5], Q is normal in $N_S(T)$ and $C_{N_S(Q)}(C) = Q$. In particular, $C_S(T) \leq S_1 = N_S(Q)$. Thus, if μ is injective, then $C_S(T) = C_{N_S(Q)}(C)Z(T) = QZ(T)$ by Proposition 2.24.

When considering involution centralizer problems for fusion systems, we generally need to verify in each individual case that the terminal component we consider is standard. In contrast with the group case, this is not a straightforward task. Indeed, in some cases a terminal component is provably not standard. However, it develops that many of these technically difficult configurations are ultimately unnecessary to treat, because they arise for example in almost simple fusion systems that are not simple, or in wreath products of a simple system with an involution. Thus, we will usually need assumptions that go beyond supposing merely that the structure of the terminal component we consider is known, but also information about the embedding of that subsystem in the ambient system. Such stronger assumptions can be made if one classifies, as was proposed by Aschbacher, the simple “odd systems” rather than the simple fusion systems of component type (cf. [Asc16]). The hypothesis in Theorem 1 that C is subintrinsic should be seen in this context.
Definition 2.27. Let $C \in \mathcal{C}(F)$. Then C is said to be \textit{subintrinsic in} $\mathcal{C}(F)$ if there exists $H \in \mathcal{C}(C)$ such that $\mathcal{I}_F(H) \cap Z(H) \neq \emptyset$.

It follows in a fairly straightforward way from results of Aschbacher that a subintrinsic Benson-Solomon component C is terminal. Rather than use the component theorem for fusion systems, it is more convenient in our case to show that C is terminal using [Asc16, Theorem 7.4.14], which is a major ingredient of the proof of the component theorem. As suggested above, a nontrivial amount of work is then required to go on and show that C is standard; see Section 3.

2.7. \textbf{Tightly embedded subsystems and tight split extensions.} Recall from the previous subsection that a subgroup K of a finite group G is called \textit{tightly embedded} if K has even order and $K \cap K^g$ has odd order for every $g \in G \setminus N_G(K)$. This definition does not translate well to fusion systems as it is, but there exist suitable reformulations. It follows from Aschbacher [Asc16, 0.7.1] that a subgroup K of G of even order is tightly embedded if and only if the following two conditions hold:

(T1') K is normalized by $N_G(X)$ for every non-trivial 2-subgroup X of K.
(T2') For every involution x of K, $x^G \cap K = x^{N_G(K)}$.

If K is tightly embedded and Q is a Sylow 2-subgroup of K, then note furthermore that $N_G(Q) \leq N_G(K)$ and $N_G(K) = K N_G(Q)$ by a Frattini argument. This leads to a definition of tightly embedded subsystem of saturated fusion systems at arbitrary primes.

Definition 2.28 (cf. [Asc16, Chapter 3]). Let F be a saturated fusion system on a p-group S, and let Q be a saturated subsystem of F on a fully normalized subgroup Q of F. Then Q is \textit{tightly embedded} in F if it satisfies the following three conditions:

(T1) For each $1 \neq X \in Q^f$ and each $\alpha \in \mathfrak{A}(X)$, $O^{p'}(N_Q(X))^{\alpha}$ is normal in $N_F(X^{\alpha})$.
(T2) For each $X \leq Q$ of order p, $X^F \cap Q = X^{\text{Aut}_F(Q) Q}$ where $X^{\text{Aut}_F(Q) Q} := \{X \alpha \varphi : \alpha \in \text{Aut}_F(Q), \varphi \in \text{Hom}_Q(X^{\alpha}, Q)\}$.
(T3) $\text{Aut}_F(Q) \leq \text{Aut}(Q)$.

When working with standard subsystems later on, we will need the following lemma on tightly embedded subsystems.

Lemma 2.29. Let F be a saturated fusion system on S, and suppose Q is a tightly embedded subsystem of F on an abelian subgroup Q of S. Then $F_Q(Q)$ is tightly embedded in F.

Proof. As Q is abelian, by Alperin’s fusion theorem (cf. [AKO11, Theorem I.3.6]), the following holds:

(*) The p-group Q, and thus the subsystem $F_Q(Q)$, is normal in any saturated fusion system on Q.

Let $1 \neq X \leq Q$ and $\alpha \in \mathfrak{A}(X)$. By (*), we have $Q = N_Q(X) \leq N_Q(X)$ and thus $Q = O^{p'}(N_Q(X))$. As Q is tightly embedded, it follows $N_Q(X)^\alpha = Q^\alpha = O^{p'}(N_Q(X))^\alpha \leq N_F(X^\alpha)$. So (T1) holds for $F_Q(Q)$.
Let $X \leq Q$ be of order p. Again using (*), we have $Q \leq Q$. So every morphism in Q extends to an element of $\text{Aut}_Q(Q) \leq \text{Aut}_F(Q)$, and this implies $X^\text{Aut}_F(Q) = X^\text{Aut}_F(Q)$. Hence, as Q is tightly embedded, $X^F \cap Q = X^\text{Aut}_F(Q)Q = X^\text{Aut}_F(Q)F_Q(Q)$. This shows that (T2) holds for $F_Q(Q)$. Clearly (T3) holds for $F_Q(Q)$.

To exploit the existence of standard subsystems, it is useful in many situations to study certain kinds of extensions involving tightly embedded subsystems. We summarize the main definitions:

Definition 2.30. Let F_0 be a fusion system on a 2-group S_0.

- A *split extension* of F_0 is a pair (F, U), where
 - F is a saturated fusion system over a 2-group S,
 - F_0 is normal in F,
 - $O^2(F) = O^2(F_0)$, and
 - U is a complement to S_0 in S.
- The split extension (F, U) is *tight* if $F_U(U)$ is tightly embedded in F.
- A *critical split extension* is a tight split extension in which U is a four group.
- F_0 is said to be *split* if there exists no nontrivial critical split extension of F_0; that is, for each such extension (F, U), the fusion system F is the central product of F with $C_S(F_0)$.

Suppose F is a saturated 2-fusion system and C is a standard component with centralizer Q on Q. If C is split, then by [Asc16, Theorem 8], C is either a component of F, or Q is elementary abelian, or the 2-rank of Q equals 1. We show in Lemma 2.40 that the Benson–Solomon fusion systems are split. So after showing that a component C as in Theorem 7 is standard, we know that, unless C is a component of F, its centralizer Q in S is either elementary abelian or quaternion or cyclic. Accordingly, these are the cases we will treat.

Lemma 2.31. Let C be a quasisimple saturated fusion system over the 2-group T, and let (F, U) be a critical split extension of C over the 2-group S. Then

(a) $\text{Aut}_F(U) = 1$ and so $N_F(U) = C_F(U);$ and
(b) $\langle u \rangle \in F^f$ and $C_F(u) = C_F(U)$ for each $1 \neq u \in U$.

Proof. By definition of critical split extension, U is a four subgroup of S tightly embedded in F and a complement to T in S. Also, $O^2(F) = O^2(C) = C$, as C is quasisimple. Since $O^2(F) = C$, this means $\text{hyp}(F) = T$. Since $S/\text{hyp}(F) \cong U$ is abelian, we see from [AKO11, Lemma I.7.2] that also $\text{foc}(F) = T$. Thus, $\text{Aut}_F(U) = 1$, since otherwise $T \cap U = \text{foc}(F) \cap U \geq [U, \text{Aut}_F(U)] > 1$, which is not the case. This proves the first assertion in (a), and the second then follows by definition of the normalizer and centralizer systems.

Now by definition of tight embedding, U is fully normalized in F. Fix $1 \neq u \in U$. By (T2) and part (a), it follows that $u^F \cap U = \{u\}$. However, (3.1.5) of [Asc16] says that $\langle u \rangle$ has a fully F-normalized F-conjugate in U, so $\langle u \rangle \in F^f$. Then taking α to be identity in (T1), we see that U is normal in $N_F(\langle u \rangle) = C_F(u)$, so that $C_F(u) \leq N_F(U) = C_F(U)$ by (a). This completes the proof of (b), as the other inclusion is clear.

2.8. The fusion system of $\text{Spin}_7(q)$ and $F_{\text{Sol}}(q)$. Our main references for $F_{\text{Sol}}(q)$ and for 2-fusion systems of $\text{Spin}_7(q)$ are [LO02,LO05,COS08,AC10,HL18].

We follow Section 4 of Aschbacher and Chermak fairly closely [AC10] within this subsection, except that it will be convenient to restrict the choice of the finite fields F_q over which the systems
in question are defined, and to make small changes to notation. For concreteness, we consider a fixed but arbitrary nonnegative integer \(l \), and set \(q_l = 5^{2l} \). Except for the fact that \(l \) is in the role of \("k" \), we adopt the notation in [AC10 Section 4], as follows.

Let \(\tilde{F} \) be an algebraic closure of the field with 5 elements (thus, we take \(p = 5 \) in [AC10 Section 4]), and let \(F \) be the union of the subfields of the form \(F_{5^{2n}} \) in \(\tilde{F} \). Let \(H = \text{Spin}_7(F) \), let \(T \) be a maximal torus of \(H \), and let \(S_{\infty} \) be the 2-power torsion subgroup of \(T \). Let \(\psi \) be the Frobenius endomorphism of \(H \) as defined in (4.2.2) of [AC10] and inducing the 5-th power map on \(T \), and set \(\sigma = \psi_3 = \psi^{2^3} \). Let \(W \) be the subgroup of \(H \) defined on page 911 of [AC10], let \(W_S \) be the subgroup of \(W \) defined on page 915 of [AC10], and set \(S = S_{\infty}W_S \). Thus, \(S \cap W = W_S \). The subgroup \(B \) of \(H \) is defined just before Lemma 4.4 of [AC10] as the normalizer of the unique normal four subgroup \(U \) of \(S \) (see Notation 2.34). Finally, the group \(K \) is defined at the top of page 918 as a certain semidirect product of the connected component \(B^0 \) of \(B \) with a subgroup \(\langle y, \tau \rangle \cong S_3 \), such that \(\tau \in B \) is of order 2, and such that \(y \) is of order 3 and permutes transitively the involutions in \(U \). A free amalgamated product \(G = H \ast_B K \) having Sylov 2-subgroup \(S \) is then defined by an amalgam constructed in [AC10 Section 5], which is ultimately defined at the top of page 923.

Theorem 2.32. For any choice of \(l \geq 0 \), the automorphism \(\sigma = \psi_l \) of \(H \) lifts uniquely to an automorphism of the group \(G \) that commutes with \(y \), and hence an automorphism that leaves \(K \) invariant. Moreover, \(C_S(\sigma) \) is then a finite Sylov 2-subgroup of \(C_G(\sigma) \), and \(F_{C_S(\sigma)}(C_G(\sigma)) \) is isomorphic to \(F_{\text{Sol}}(q_l) \).

Proof. The first statement here is shown in Lemma 5.7 of [AC10] and in the paragraph before it. The second part is Theorem A(3) of [AC10], which is ultimately shown in Theorem 9.9. \(\Box \)

We denote also by \(\sigma \) the automorphism of \(G \) given by Theorem 2.32. For any subgroup \(X \) of \(G \), write \(X_\sigma \) for \(C_X(\sigma) \). As \(H \) is of universal type, \[H_\sigma = C_H(\sigma) = \text{Spin}_7(q_l). \]

Now \(T_\sigma \) is a split maximal torus of \(H_\sigma \). Set \(k = l + 2 \), and denote by \(T_k \) the \(2^k \)-power torsion subgroup \(S_{\infty} \). Then \(T_k \) is a Sylov 2-subgroup of the finite abelian group \(T_\sigma \).

Lemma 2.33. The following hold.

(a) \(\psi \) centralizes \(W \),
(b) \(\sigma = T_kW_S \) is a Sylov 2-subgroup of \(H_\sigma \), and
(c) if \(X \in \{ H, B, K, S, W, T \} \), then \(X \) and \(X_\sigma \) are invariant under \(\psi \).

Proof. Part (a) is found in [AC10 Lemma 4.3], while part (b) is [AC10 Lemma 4.9]. All parts of (c) follow from the definitions in [AC10 Section 4], except for the case \(X = K \), which is implied as just observed by Theorem 2.32. \(\Box \)

Write \(\mathcal{H}_\sigma = F_{\text{Spin}}(q_l) \) for the fusion system \(F_{S_\sigma}(H_\sigma) \), and set \(\mathcal{F}_\sigma = F_{S_\sigma}(G_\sigma) \). Then \(\mathcal{F}_\sigma \cong F_{\text{Sol}}(q_l) \) by Theorem A(3) of [AC10], and \(C_{\mathcal{F}_\sigma}(\langle z \rangle) = \mathcal{H}_\sigma \) where \(\langle z \rangle = Z := Z(S_\sigma) = Z(S) \) is of order 2.

We continue to set up notation for some common subgroups of \(S_\sigma \), and we recall the various parts of the set up appearing in [AC10 §4] that are needed later.
Notation 2.34. Let \(w_0 \in W_S \) be the element of order 2 fixed in [AC10] Lemma 4.3. Thus, \(w_0 \) inverts \(T_k \) and is centralized by \(\psi \). The 2-group \(S_\sigma \) has a sequence of elementary abelian subgroups

\[
1 < Z < U < E < A,
\]
each of index 2 in the next, with \(Z = Z(S_\sigma) \) as above, \(U \) the unique normal four subgroup of \(S_\sigma \), \(E = \Omega_1(T_k) \), and \(A = E \langle w_0 \rangle \), an elementary abelian subgroup of order 16. We also set \(R_\sigma = C_{S_\sigma}(E) = T_k \langle w_0 \rangle = T_k A \).

The following lemma collects a number of properties of these subgroups and their automorphism groups.

Lemma 2.35. The following hold.

(a) For each \(k_0 \geq 2 \), \(T_{k_0} \) is the unique homocyclic abelian subgroup of \(S \) of rank 3 and exponent \(2^{k_0} \), and \(T_{k_0} \) is inverted by \(w_0 \).

(b) \(T_k \) is \(F_\sigma \)-centric, \(S_\sigma / T_k \cong C_2 \times D_8 \), and \(\text{Aut}_{F_\sigma}(T_k) \cong C_2 \times GL_3(2) \).

(c) \(R_\sigma \) is characteristic in \(S_\sigma \), and \(\text{Out}_{F_\sigma}(R_\sigma) \cong GL_3(2) \).

(d) \(A \) is an elementary abelian subgroup of \(S_\sigma \) of maximum order, and so \(S_\sigma \) has 2-rank 4.

(e) \(\text{Aut}_{F_\sigma}(X) = \text{Aut}(X) \) for \(X \in \{ Z, U, E, A \} \).

Proof. By Lemma 4.9(b) of [AC10], \(T_2 \leq T_{k_0} \) is the unique homocyclic abelian subgroup of \(S \) of rank 3 and exponent 4. Moreover, \(T = C_H(T_2) \), and \(S_\sigma \cap T = T_k \) is of rank 3 and of exponent \(2^k \). This shows that \(T_2 \), and more generally, \(T_{k_0} = \Omega_{k_0}(T_k) \) for \(2 \leq k_0 \leq k \) is the unique subgroup of \(S \) of its isomorphism type. Also, \(w_0 \) inverts \(T \) by [AC10] Lemma 4.3(a)]. This completes the proof of (a). Again as \(T = C_H(T_2) \), one has \(C_{H_\sigma}(T_2) = T_\sigma = T_k \times O(T_\sigma) \), and it follows that \(T_k \) is \(F_\sigma \)-centric. The second statement in part (b) follows from [AC10] Lemma 4.3(c)], while the third is the content of [AC10] Theorem 5.2.

For the proof of (c), note first that \(T_k \) is characteristic in \(S \) by (a). So also \(R_\sigma = C_S(\Omega_1(T_k)) \) is characteristic in \(S \). Finally, as \(T_k \) is fully \(F_\sigma \)-normalized by (a) and as \(R_\sigma/T_k \) is of order 2 and induces \(O_2(\text{Aut}_{F_\sigma}(T_k)) \) on \(T_k \), the restriction map \(\rho : \text{Aut}_{F_\sigma}(R_\sigma) \to \text{Aut}_{F_\sigma}(T_k) \) is surjective by the Extension Axiom. Let \(\varphi \in \ker(\rho) \). Then by [BLO03] Lemma A.8 and the first statement in (b), \(\varphi \) is conjugation by an element of \(Z(T_k) = T_k \). It follows that \(\ker(\rho) = \text{Aut}_{T_k}(R_\sigma) \) is of index 2 in \(\text{Inn}(R_\sigma) \). Thus, \(\text{Out}_{F_\sigma}(R_\sigma) \cong \text{Aut}_{F_\sigma}(T_k)/O_2(\text{Aut}_{F_\sigma}(T_k)) \cong GL_3(2) \) by the last statement in (b).

Now as \(E = \Omega_1(T_k) \) is elementary abelian of order 8 by (a), and \(w_0 \) inverts \(T_k \), it follows that \(A \) is elementary abelian of order 16. There are no elementary abelian subgroups of \(S \) of rank 5 by [AC10] Lemma 7.9(a)], so (d) holds. Finally, we refer to Lemma 3.1 of [LO02] for the \(F_\sigma \)-automorphism groups of \(X \in \{ Z, U, E, A \} \), where \(A \) is denoted “\(E^* \)”.

Lemma 2.36. All involutions in \(S_\sigma \) are \(F_\sigma \)-conjugate.

Proof. This is a direct consequence of the construction of these systems [LO02] Theorem 2.1] and can be seen as follows. Each involution in \(H_\sigma - Z \) has \(-1\)-eigenspace of dimension 4 on the orthogonal space for \(H_\sigma/Z(H_\sigma) \) by [LO02] Lemma A.4(b)]. It follows from this that \(H_\sigma \) has two conjugacy classes of involutions, namely the classes in \(Z \) and in \(S_\sigma - Z \). In \(F_\sigma \) these two classes become fused by construction (c.f. Lemma 2.35(e)).
Lemma 2.37. Let \(F \in \{ \mathcal{F}_\sigma, \mathcal{H}_\sigma \} \), and let \(\mathcal{L} \) be the centric linking system for \(F \). Then the natural map \(\mu : \text{Out}(\mathcal{L}) \rightarrow \text{Out}(F) \) is an isomorphism.

Proof. This follows from [LO02, Lemma 3.2] and the obstruction sequence in [AKO11 Proposition 5.12] (that is, from (2.8) above). \(\square \)

The choice of \(q_l = 5^{2^l} \) is motivated by the next two lemmas, especially Lemma 2.38(a).

Lemma 2.38. Let \(\mathcal{H}_q \) be the 2-fusion system of \(\text{Spin}_7(q) \) for some odd \(q \), let \(l + 3 \) be the 2-adic valuation of \(q^2 - 1 \), and set \(H = \text{Spin}_7(q) \) as above. Then the following hold.

(a) \(\mathcal{H}_q \) is tamely realized by \(H \).

(b) With \(R_\sigma \) as in Notation 2.34, each automorphism of \(H \) that normalizes \(S_\sigma \) and centralizes \(R_\sigma \) is conjugation by an element of \(E = Z(R_\sigma) \).

Proof. Since \(q^2 - 1 \) and \(q^2 - 1 \) have the same 2-adic valuation, the fusion systems \(\mathcal{H}_q \) and \(\mathcal{H}_\sigma \) are isomorphic by [BMO12, Theorem A(a,c)]. The composition \(\text{Out}(H_\sigma) \rightarrow \text{Out}(\mathcal{H}_\sigma) \) of \(\mu \) with \(\kappa \) (see Section 2.2) is an isomorphism with \(q_l = 5^{2^l} \) by [BMO16, Proposition 5.16]. Thus, \(\mathcal{H}_q \) is tamely realized by \(H \) by Lemma 2.37 and the definition of tame (Definition 2.10).

Set \(k = l + 2 \) as before. For the sake of brevity, we make appeals to [BMO16 §5] also for (b). Note that by choice of \(q_l \), \(H \) satisfies Hypotheses 5.1(III.1) of that reference. Let \(\alpha \) be an automorphism of \(H \) that normalizes \(S_\sigma \) and centralizes \(R_\sigma \). Since \(R_\sigma \geq T_k \), \(\alpha \) centralizes \(T_k \). Thus, by [BMO16 Lemma 5.9], \(\alpha \in \text{Inn}(H_\sigma) = \text{Inn}(H_\sigma) \text{Aut}(T(H_\sigma)) \), and so there is \(h \in H_\sigma \) and \(t \in T \) such that \(\alpha \) is conjugation by \(ht \). Then also \(h \in C_H(T_k) = T \), with the last equality by [BMO16 Lemma 5.3(a)], so that \(ht \in T \). However, \(R_\sigma \) contains the element \(w_0 \) inverting \(T_k \), c.f. Lemma 2.35(a), and so it follows that \(ht \in \Omega_1(T_k) = Z(R_\sigma) \). \(\square \)

Lemma 2.39. The following hold.

(a) The collection \(\{ \mathcal{F}_{\text{Sol}}(q_l) \mid l \geq 0 \} \) gives a nonredundant list of the isomorphism types of the 2-fusion systems \(\mathcal{F}_{\text{Sol}}(q) \) as \(q \) ranges over odd prime powers.

(b) The collection \(\{ \mathcal{F}_{\text{Spin}}(q_l) \mid l \geq 0 \} \) gives a nonredundant list of the isomorphism types of the 2-fusion systems \(\mathcal{F}_{\text{Spin}}(q) \) as \(q \) ranges over odd prime powers.

Proof. Part (a) is the content of [COS08, Theorem B]. For each odd prime power \(q \), the fusion system of \(\text{Spin}_7(q) \) is isomorphic to some fusion system in the given collection by Lemma 2.38(a). Then (b) follows as a Sylow 2-subgroup of \(\text{Spin}_7(q_l) \) has order \(2^{10+3l} \) by Lemma 2.35(a,b). \(\square \)

The next lemma shows that \(\mathcal{F}_\sigma \) has just one more essential subgroup in addition to the essential subgroups of \(\mathcal{H}_\sigma \).

Lemma 2.40. Let \(P \in \mathcal{F}_\sigma^e \) be an essential subgroup. Then one of the following holds.

(a) \(\text{Aut}_{\mathcal{F}_\sigma}(P) = \text{Aut}_{\mathcal{H}_\sigma}(P) \) and \(P \) is \(\mathcal{H}_\sigma \)-essential, or

(b) \(P = C_{S_\sigma}(U) \), \(\text{Aut}_{\mathcal{F}_\sigma}(P) = \langle \text{Aut}_{\mathcal{H}_\sigma}(P), c_\gamma \rangle \), and \(\text{Out}_{\mathcal{F}_\sigma}(P) \cong S_3 \).

Proof. Recall that an essential subgroup in a fusion system is in particular both centric and radical. In [LS17], the centric radical subgroups and their outer automorphism groups in \(\mathcal{H}_\sigma \) and \(\mathcal{F}_\sigma \) are explicitly tabulated. From Tables 1 and 4 there, the only outer automorphism groups having a strongly embedded subgroup are \(S_3 \) and a Frobenius group of order \(3^2 \cdot 2 \). In all cases, either \(P \) is essential in \(\mathcal{H}_\sigma \) and \(\text{Out}_{\mathcal{F}_\sigma}(P) = \text{Out}_{\mathcal{H}_\sigma}(P) \) so that (a) holds, or \(P = C_{S_\sigma}(U) \) and
Out$_F(P) \cong S_3$. In the latter case, Aut$_F(P)$ is generated by Aut$_{H_\sigma}(P)$ and c_y essentially by the construction of y in Section 5 of [AC10], but it is difficult to find a precise statement of this claim. So instead, we appeal to [LO05] where $C_{S_\sigma}(U)$ is denoted $S_0(q^\infty)$ on p. 2400, and where c_y is explicitly constructed as the automorphism $\tilde{\gamma}_u$ of $C_{S_\sigma}(U)$ in [LO05] Definition 1.6). There, Γ_n is used to denote Aut$_F(C_{S_\sigma}(U))$ when $n = 2^l$.

The following generation statements will be needed in the process of showing that a subintrinsic maximal Benson-Solomon subsystem is standard. The generation statement of Lemma 2.41(a) is the one which is obtained by the construction by Levi and Oliver in [LO05].

Lemma 2.41. The following hold.

(a) F_σ is generated by H_σ and Aut$_F(C_{S_\sigma}(U))$.

(b) F_σ is generated by H_σ and $N_{F_\sigma}(R_\sigma)$.

Proof. Part (a) follows from Lemma 2.40 and the Alperin-Goldschmidt fusion theorem [AKO11] Theorem I.3.6. As $U \leq E$, $R_\sigma = C_{S_\sigma}(E) \leq C_{S_\sigma}(U)$. Further, T_k is abelian and weakly F_σ-closed by Lemma 2.35(a), hence also $R_\sigma = C_{S_\sigma}(\Omega_1(T_k))$ is weakly F_σ-closed. Thus, each element of Aut$_F(C_{S_\sigma}(U))$ restricts to normalize R_σ, and hence lies in $N_{F_\sigma}(R_\sigma)$. This shows that (b) is a consequence of (a). □

The next lemma augments the results of [HL18] on automorphisms and extensions of the Benson-Solomon systems.

Proposition 2.42. Let D be a saturated fusion system over the 2-group D such that $F^*(D) = F_\sigma = F_{Sol}(q_t)$.

(a) All involutions in $D - S_\sigma$ are $C_D(z)$-conjugate, hence D-conjugate.

(b) If $f \in D - T$ is a fully D-centralized involution, then

$$C_{F_\sigma}(f) = F_{\psi_{-1}} \cong F_{Sol}(q_{t-1}).$$

Proof. The almost simple extensions of F_σ were determined in [HL18]. By [HL18] Theorem 3.10, Theorem 4.3], we have $O^2(D) = F_\sigma$. We may further fix a complement F to S_σ in D such that F is cyclic of order 2^l with $1 \leq l_0 \leq l$, and such that the conjugation action of F on S_σ is the restriction of the conjugation action of a group of field automorphisms of H_σ to S_σ. We may thus assume that $|F| = 2$, and that F is generated by the standard field automorphism $\sigma_1|_{S_\sigma}$ fixed at the beginning of this subsection, where here we set $\sigma := \psi_{-1} \in Aut(H)$. Write f for the automorphism $\sigma_1|_{H_\sigma}$ of H_σ, and also write f for its restriction to S_σ. Note that σ_1 indeed normalizes H_σ and S_σ by Lemma 2.33(b). We also rely on Lemma 2.33(b) at many places in the proof below, without explicitly saying so. By Lemma 2.38(a) and Theorem 2.11

$$C_D(z) \text{ is the fusion system of the extension } H_\sigma\langle f \rangle,$$

a semidirect product.

Recall $k = l + 2$ as before, and let $H_1 = N_H(H_\sigma)$. Then $H_1/Z(H_\sigma) \cong Inn_{diag}(H_\sigma)$ by [GLS98] Lemma 2.5.9(b)], and hence $H_1 = H_\sigma N_T(H_\sigma)$. As Out$_{diag}(H_\sigma)$ has order 2, we may fix $t \in N_T(H_\sigma) - H_\sigma$ with order 2^{k+1} and powering to z, so that $H_1 = H_\sigma(t)$. Considered as an endomorphism of H_1, σ_1 normalizes H_σ and T, and thus induces an automorphism of H_1. Set $g = \sigma_1|_H$, so that g has order 4, and $g|_{H_\sigma} = f$ has order 2. Set $J_1 := H_1\langle g \rangle$, $J := H_\sigma\langle f \rangle$, $\tilde{J}_1 = J_1/C_{H_1}(H_\sigma)$, and $\tilde{J} = J/Z(H_\sigma)$. Note that $C_{\tilde{J}_1}(H_\sigma) = \langle g^2, z \rangle$. Since g^2 centralizes H_σ, $\langle g^2 \rangle$
is normal in $H_\sigma(g)$, and $H_\sigma(g)/\langle g^2 \rangle \cong H_\sigma(f)$ via an isomorphism which sends $g\langle g^2 \rangle$ to f. Hence, there is an isomorphism $\tilde{H}_\sigma(\tilde{g}) \rightarrow \tilde{H}_\sigma(\tilde{f}) = \tilde{I}$ which is the identity on $\tilde{H}_\sigma = H_\sigma/Z(H_\sigma) = \tilde{H}_\sigma$ and which sends \tilde{g} to \tilde{f}.

By [GLS98] Theorem 4.9.1(d), $\text{Inndiag}(H_\sigma) \cong \tilde{H}_1$ acts transitively on the involutions in $\tilde{H}_\sigma\tilde{g}$, and so each involution in $\tilde{H}_\sigma\tilde{g}$ is \tilde{H}_σ-conjugate to \tilde{g} or \tilde{g}^t. As $t^q = t^{\psi-1} = t^{2^{d-1}}$ and $5^{2^{d-1}} - 1$ has 2-adic valuation $l + 1 = k - 1$, we see that there is an element $u \in \langle t^{2^{k-1}} \rangle \leq H_\sigma$ of order 4, such that $[g, u] = 1$, $u^2 = z$, and $t^q = tu$. Then $g^t = gu^{-1}$, so that $\tilde{g}^t = \tilde{g}\tilde{u}^{-1}$. From the isomorphism $\tilde{H}_\sigma(\tilde{g}) \cong \tilde{H}_\sigma(\tilde{f})$, we conclude that each involution in $\tilde{H}_\sigma(\tilde{f})$ is \tilde{H}_σ-conjugate to either of \tilde{f} or $\tilde{f}\tilde{u}^{-1}$. However, the two preimages of $\tilde{f}\tilde{u}^{-1}$ in $H_\sigma(f)$ are fu^{-1} and $fu = fu^{-1}z$, both of which are of order 4 as $[f, u] = 1$. Thus, all four subgroups of $H_\sigma(f)$ which contain $\langle z \rangle$ and are not contained in H_σ are H_σ-conjugate. Since (f, z) is such a four subgroup, it is enough to show that f is H_σ-conjugate to fz. But $f^s = fz$ where $s = t^2 \in H_\sigma$. This completes the proof that all involutions in $H_\sigma f - H_\sigma$ are H_σ-conjugate, and this implies (a).

It remains to prove (b). We keep the notation from above, writing f for $\sigma_1|_{H_\sigma}$ and for $\sigma_1|_{S_\sigma}$, where $\sigma_1 = \psi_{-1} \in \text{Aut}(H)$.

We first prove that $\langle f \rangle$ itself is fully D-centralized. By Lemma 2.33(a), the 2-group S_σ has a decomposition $S_\sigma = T_k W_S$ such that f centralizes W_S and acts on T_k via the map $t \mapsto t^{\psi-1}$. In particular $C_{S_\sigma}(f) = T_k W_S$ is a Sylow 2-subgroup of H_σ. Now the centralizer $C_{H_\sigma}(f) = H_\sigma$, is isomorphic to $\text{Spin}_{\tau}(q_{\phi-1})$ by [GLS98] Theorem 4.9.1(a), so that $C_{C_{D}(z)}(f) = C_{D}(f) = C_{S_\sigma}(f)/\langle f \rangle$ is a Sylow 2-subgroup of $C_{H_\sigma}(f)$. Hence, f is fully $C_{D}(z)$-centralized by (2.43), and

$$C_{C_{D}(z)}(f) \cong H_{\sigma_1} \times \langle f \rangle,$$

by [AKO11] 1.5.4. However, all involutions in $D - S_\sigma$ are $C_{D}(z)$-conjugate by (a), so two involutions in $D - S_\sigma$ are $C_{D}(z)$-conjugate if and only if they are D-conjugate. This completes the proof that $\langle f \rangle$ is fully D-centralized.

Next, since $\langle f \rangle$ is fully D-centralized, $C_{D}(f)$ is saturated. Lemma 2.6 then shows $C_{F}(f)$ is normal in $C_{D}(f)$, so that $C_{C_{F}(f)}(z)$ is normal in $C_{D}(f)$ by Lemma 2.6 applied in the role of F. Observe that $C_{C_{F}(f)}(z)$ has Sylow group $S_\sigma_1 = C_{S_\sigma}(f)$. Consequently, we have

$$C_{C_{F}(f)}(z) = H_{\sigma_1}.$$

from (2.44).

Now Lemma 2.7 shows that it suffices to determine $C_{F}(f)$ in order to finish the proof of (b). For if $f' \in D - S_\sigma$ is another involution fully centralized in D, then any element φ of $A_{D}(f)$ with $f^\varphi = f'$ will induce an isomorphism $C_{F}(f) \rightarrow C_{F}(f')$ by that lemma.

At this point we could appeal to [Asc17b] Theorem 11.19 to finish the proof, but we prefer to give a more direct argument. We instead argue next within the Aschbacher-Chermak amalgam to show that $C_{D}(f)$ contains F_{σ_1}. Recall $f = \sigma_1|_{H_\sigma}$ by definition. For clarity, we denote by $\widehat{\sigma_1} \in \text{Aut}(G)$ the unique lift of $\sigma_1 \in \text{Aut}(H)$ to G as given by Theorem 2.32, where now σ_1 is in the role of the “σ” of that lemma. Also write $\widehat{\sigma} \in \text{Aut}(G)$ for the unique lift of $\sigma \in \text{Aut}(H)$. By uniqueness of these lifts, $\widehat{\sigma_1} = \widehat{\sigma}$. In particular, $X_{\widehat{\sigma_1}} \leq X_{\widehat{\sigma}}$ for any subgroup $X \leq G$.

Recall $F_{S_\sigma_1}(G_{\widehat{\sigma_1}}) = F_{\sigma_1}$, again from Theorem 2.32, and that F_{σ_1} is generated by H_{σ_1} and $\text{Aut}_{F_{\sigma_1}}(C_{S_\sigma_1}(U))$ from Lemma 2.41(a). So to prove that $C_{D}(f)$ contains F_{σ_1}, we are reduced via (2.44) to a verification that $C_{D}(f)$ contains $\text{Aut}_{F_{\sigma_1}}(C_{S_\sigma_1}(U))$. For the proof, note first that by construction, $\widehat{\sigma_1}|_{S_\sigma} = \psi_{-1}|_{S_\sigma} = f$. So D is equal to the semidirect product of S_σ with $\widehat{\sigma_1}|_{S_\sigma}$.

21
Now \(y \) (in the notation of Theorem 2.32) acts on \(C_{S_{\sigma_1}}(U) \). Viewing \(y \) in the semidirect product of \(K_\sigma(\hat{T}_1|K_\sigma) \) and applying Theorem 2.32 with \(\sigma_1 \) in the role of “\(\sigma \)”, we see that \(y \) centralizes \(\hat{T}_1 \), so that \(c_y \) extends to the automorphism \(c_y \) of \(C_{S_{\sigma_1}}(U)(\hat{T}_1|S_{\sigma_1}) = C_{S_\sigma}(U)(\hat{T}_1|S_\sigma) \) that centralizes \(\hat{T}_1 | S_{\sigma_1} = f \). Now as \(\text{Aut}_{F_{\sigma_1}}(C_{S_{\sigma_1}}(U)) \) is generated by \(\text{Aut}_{H_{\sigma_1}}(U) \) and \(c_y \) by Lemma 2.40(b), it follows that \(\text{Aut}_{F_{\sigma_1}}(C_{S_{\sigma_1}}(U)) \) is contained in \(C_D(f) \). Lemma 2.41(a) with \(\sigma_1 \) in the role of \(\sigma \) shows that \(C_D(f) \) contains \(F_{\sigma_1} \). We have \(D = F_{\sigma} \), since \(F_{\sigma} = O^2(D) \). So also \(C_{F_\sigma}(f) \geq O^2(C_D(f)) \geq O^2(F_{\sigma_1}) = F_{\sigma_1} \). This shows that \(C_{F_\sigma}(f) \) contains \(F_{\sigma_1} \).

We now complete the proof by appealing to Holt’s Theorem for fusion systems [Asc17a, Theorem 2.1.9]. The systems \(C_{F_\sigma}(f) \) and \(F_{\sigma_1} \) both have Sylow group \(C_{S_\sigma}(f) \). Further, all involutions in \(F_{\sigma_1} \) are conjugate by (a), and so \(z^{C_{F_\sigma}(f)} = z^{F_{\sigma_1}} \) for the involution \(z \in Z(S_{\sigma_1}) \). Moreover, we showed in (2.45) that \(C_{C_{F_\sigma}(f)}(\hat{S})(\tau) = H_{\sigma_1} \leq F_{\sigma_1} \). This completes the verification of the hypotheses of Holt’s Theorem, and by that theorem we have \(C_{F_\sigma}(f) = F_{\sigma_1} \).

We close this section by verifying that the Benson-Solomon systems are split. This allows one, via Theorem 8 of [Asc16], to severely restrict the Sylow subgroup of the centralizer of a Benson-Solomon standard subsystem.

Lemma 2.46. \(F_{\sigma} \) is split.

Proof. Let \((F, V) \) be a critical split extension of \(F_{\sigma} \), where \(F \) a saturated fusion system over any finite 2-group \(S \). Let \(\mathcal{L}_{\sigma} \) be the centric linking system for \(F_{\sigma} \). Note that \(S / C_S(F_{\sigma})S_{\sigma} \) embeds in \(\text{Out}(\mathcal{L}_{\sigma}) \) by [Sem15, Theorem A], while \(\text{Out}(\mathcal{L}_{\sigma}) \) is cyclic of 2-power order by [HL18, Theorem 3.10]. Hence

\[
(2.47) \quad V \cap C_S(F_{\sigma})S_{\sigma} > 1.
\]

Write \(V = \langle u, v \rangle \) with \(u \in V \cap C_S(F_{\sigma})S_{\sigma} \). Then either \(V \cap C_S(F_{\sigma}) > 1 \), or there exist elements \(c \in C_S(F_{\sigma}) \) and \(1 \neq t \in S_{\sigma} \) such that \(u = ct \).

In the former case, i.e. if \(V \cap C_S(F_{\sigma}) > 1 \), we have by (T1) that \(V \) is normal in \(N_F(V \cap C_S(F_{\sigma})) = F \), and hence that \(V \leq Z(F) \) by Lemma 2.31(a). Thus \(F \) is the central product of \(V = C_S(F_{\sigma}) \) and \(F_{\sigma} \), as desired.

Consider the latter case. As \(C_S(F_{\sigma}) \cap S_{\sigma} \leq Z(F_{\sigma}) = 1 \) and \(u \) is an involution, \(t \) is an involution. Then, as \(F_{\sigma} \) has one class of involutions by Lemma 2.36, \(u \) is \(F \)-conjugate to \(z \in Z(S) \). However, \(\langle u \rangle \) is itself fully \(F \)-centralized by Lemma 2.31(a), and so \(u \in Z(S) \). As \(\langle v \rangle \) is fully \(F \)-centralized and \(C_{\mathcal{F}}(u) = C_{\mathcal{F}}(v) \) by Lemma 2.31, we have \(v \in Z(S) \). But then, using Lemma 2.37 to see that Proposition 2.24 applies, we have \(V \leq Z(S) = C_S(S_{\sigma}) = C_S(F_{\sigma})Z(S_{\sigma}) \) by that proposition applied with \(F_1 = F \), so that \(C_S(F_{\sigma})S_{\sigma} = V_{S_{\sigma}} = S \). Thus, \(F \) is the central product of \(C_S(F_{\sigma}) \) with \(F_{\sigma} \) in this case as well. \(\square \)

2.9. The known quasisimple groups and quasisimple 2-fusion systems

In this section, we prove two lemmas about components and involution centralizers in known almost quasisimple groups that will be used in Sections 5 and 7. By a known finite simple group we mean a finite group isomorphic to one of the groups appearing in the statement of the classification of finite simple groups. By a known quasisimple group we mean a quasisimple covering of a known finite simple group. Such coverings are listed in [GLS98, Section 6.1]. An almost simple group is a finite group whose generalized Fitting subgroup is simple. Similarly, an almost quasisimple group is a finite group whose generalized Fitting subgroup is quasisimple.
Let \(p \) be an odd prime. The class of finite quasi-simple groups denoted \(\text{Chev}(p) \) in \([\text{Asc17a}]\) Chapter 0 and in \([\text{Asc17b}]\) is the same as the class denoted \(\text{Lie}(r) \) in \([\text{GLS98}]\) Definition 2.2.2; see also \([\text{GLS98}]\) Theorem 2.2.7]. But Aschbacher’s \(\text{Chev} \) is the same as the class denoted \(\text{Lie}(p) \) in \([\text{GLS98}]\) Definition 2.2.2, since this latter class contains the exceptional covers of the simple groups in \(\text{Lie}(p) \). However, the classes of 2-fusion systems determined by the members \(\text{Chev}(p) \) and by the members of \(\text{Lie}(p) \) are equal for \(p \) odd, since all exceptional covers in Table 6.1.3 of \([\text{GLS98}]\) are of odd order in this case, and \(F_\mathcal{S}(G) \cong F_{SO(G)/O(G)}(G/O(G)) \) for any finite group \(G \) with Sylow 2-subgroup \(S \). Following Aschbacher, we write \(\text{Chev}(p) \) for the class of groups appearing in \([\text{GLS98}]\) Definition 2.2.2] and \(\text{Chev}^+(p) \) for the subclass which excludes only \(2G_2(q) \) and \(L_2(q) \).

We use entirely analogous terminology for the class of known simple, quasi-simple, almost simple, and almost quasi-simple 2-fusion systems, respectively. The class of known simple 2-fusion systems consists of the fusion systems of simple groups whose 2-fusion systems are simple, together with the Benson-Solomon fusion systems. As was shown in \([\text{Asc17b}]\), the only simple groups whose 2-fusion systems fail to be simple are the Goldschmidt groups, namely the finite simple groups which have a nontrivial strongly closed abelian 2-subgroup. By a result of Goldschmidt, a Goldschmidt group is either a group of Lie type in characteristic 2 of Lie rank 1, or has abelian Sylow 2-subgroups. The subclass \(\text{Chev}_{\text{large}} \) of the class of known quasi-simple 2-fusion systems consists of those quasi-simple 2-fusion systems which are the fusion systems of the members of \(\text{Chev}^+(p) \), aside from a small list of exclusions outlined in Definition 1.1 of \([\text{Asc17b}]\). In particular, the 2-fusion system of \(\text{Spin}_7(q) \) for each odd prime power \(q \) lies in \(\text{Chev}_{\text{large}} \).

Lemma 2.48. Let \(G \) be a finite group with \(\mathcal{F}^+(G) \) a known quasi-simple group. Then for each involution \(t \in G \) and each component \(\mathcal{L} \) of \(\mathcal{C}_G(t)/O(C_G(t)) \), \(\mathcal{L} \) is a known quasi-simple group.

Proof. This follows from the determination of the conjugacy classes of involutions and their centralizers in the known almost quasi-simple groups in \([\text{GLS98}]\). More precisely, see Tables 4.5.1-4.5.3, Section 4.9, and Corollary 3.1.4 of \([\text{GLS98}]\) for these data with regard to the members of \(\text{Chev} \), Table 5.3 of \([\text{GLS98}]\) for the sporadic groups and their covers, and Section 5.2 of \([\text{GLS98}]\) for the alternating groups and their covers. \(\square \)

The next lemma says that each component of the 2-fusion system of a group \(G \) with \(O(G) = 1 \) is the fusion system of a component of the group provided the components of \(G \) are known finite quasi-simple groups. It was suggested to us by Aschbacher.

Lemma 2.49. Let \(G \) be a finite group such that \(O(G) = 1 \) and, for each component \(K \) of \(G \), \(K/Z(K) \) is a known finite simple group. Let \(S \in \text{Syl}_2(G) \) and let \(\mathcal{C} \) be a component of \(\mathcal{F}_\mathcal{S}(G) \). Then there exists a component \(K \) of \(G \) such that \(\mathcal{C} = \mathcal{F}_{\mathcal{S}\cap K}(K) \).

Proof. Set \(\mathcal{F} = \mathcal{F}_\mathcal{S}(G) \) and \(\mathcal{E} = \mathcal{F}_{\mathcal{S}\cap \mathcal{F}^+}(\mathcal{F}^+(G)) \). Suppose \(\mathcal{C} \) is a subsystem of \(\mathcal{F} \) on \(T \). As \(\mathcal{F}^+(G) \) is normal in \(G \), the subsystem \(\mathcal{E} \) is normal in \(\mathcal{F} \) by \([\text{AKO11}]\) Proposition I.6.2.

Assume first that \(\mathcal{C} \) is not a component of \(\mathcal{E} \). Write \(J \) for the set of components of \(\mathcal{F} \) which are not a component of \(\mathcal{E} \), and set \(\mathcal{D} = \prod_{\mathcal{C} \in J} \mathcal{C} \). Then by \([\text{Asc11}]\) 9.13, \(\mathcal{F} \) contains a subsystem \(\mathcal{D}\mathcal{E} \) which is the central product of \(\mathcal{D} \) and \(\mathcal{E} \). As \(\mathcal{C} \in J \), it follows in particular that \(\mathcal{E} \subseteq C_{\mathcal{F}}(T) \), as \(\mathcal{E} = \mathcal{F}_{\mathcal{S}\cap \mathcal{F}^+}(\mathcal{F}^+(G)) \), it follows now from \([\text{HS15}]\) Theorem B that \(T \leq C_{\mathcal{S}}(\mathcal{F}^+(G)) \leq C_{\mathcal{C}}(\mathcal{F}^+(G)) = Z(\mathcal{F}^+(G)) \). In particular, \(T \) is abelian, which by \([\text{Asc11}]\) 9.1 yields a contradiction to \(\mathcal{C} \) being quasi-simple. Thus, we have shown that \(\mathcal{C} \) is a component of \(\mathcal{E} \).
As $O(G) = 1$, $F^*(G)$ is the central product of $O_2(G)$ and the components of G. Thus, \mathcal{E} is a central product of $F_{O_2(G)}(O_2(G))$ and the subsystems of the form $F_{S\cap K}(K)$ where K is a component of G. Since C is not the fusion system of a 2-group, it follows now from Lemma 2.13 that \mathcal{E} is a component of $F_{S\cap K}(K)$ for some component K of G. Set $K := K/Z(K)$. As $O(G) = 1$, we have that $Z(K) \leq S$ and $Z(K)$ is contained in the centre of $F_{S\cap K}(K)$. Moreover, $F_{S\cap K}(K)/Z(K) = F_{K\cap S}(K)$. Recall that K is a “known” finite simple group. So by [Asc17a, Theorem 5.6.18], $F_{S\cap K}(K)$ is either simple or $S \cap K$ is normal in K. As C is a component of $F_{S\cap K}(K)$, the image of C in $F_{S\cap K}(K)/Z(K) = F_{K\cap S}(K)$ is a component of $F_{S\cap K}(K)$. So by [Asc11, 9.9.1], the fusion system $F_{S\cap K}(K)$ is not constrained, and thus $S \cap K$ is not normal in $F_{S\cap K}(K)$. Hence, $F_{S\cap K}(K)/Z(K) = F_{S\cap K}(K)$ is simple. In particular, $Z(K) = Z(F_{S\cap K}(K))$. As K is quasisimple, we have $K = O^p(K)$. Therefore, it follows from Puig’s hyperfocal subgroup theorem [Pui00 §1.1] and [AKO11, Corollary I.7.5] that $O^p(F_{S\cap K}(K)) = F_{S\cap K}(K)$. So $F_{S\cap K}(K)$ is quasisimple, and thus, by [Asc11 9.4], we have $C = F_{S\cap K}(K)$. □

3. Subintrinsic maximal Benson-Solomon components

We assume the following hypothesis throughout this section.

Hypothesis 3.1. Let F be a saturated fusion system over the 2-group S. Fix an odd prime number p and assume $C \cong F_{Sol}(q)$ over $T \in F^f$ is maximal in $\mathcal{C}(F)$. Let z be the involution in $Z(T)$, set $H = C_C(z)$, and suppose that $z \in I(H)$. Assume that C is not a component of F. Fix $t \in I(C)$.

Remark 3.2. The assumption $z \in I(H)$ in Hypothesis 3.1 is equivalent to saying that C is subintrinsic. For, since every involution in T is C-conjugate to z and $H = C_C(z)$ is quasisimple, we have $\mathcal{C}(C) = \{H\}$. Moreover, z is the unique involution in $Z(H)$.

The purpose of this section is to prove the following theorem.

Theorem 3.3. Assume Hypothesis 3.1. Then C is standard.

Proof. This is the content of Lemmas 3.9 and 3.10 below. □

Lemma 3.4. Let $\alpha \in Hom_F(T, S)$. Then C^α is maximal in $\mathcal{C}(F)$, $H^\alpha = C_C(z^\alpha)$, $z^\alpha \in I(H^\alpha)$, and C^α is not a component of F.

Proof. By Lemma 2.12(b), C^α is not a component of F as C is not a component of F. As $T \in F^f$, it follows from [Asc16 6.2.13] that C^α is maximal in $\mathcal{C}(F)$. As α induces an isomorphism from C to C^α, we have $H^\alpha = C_C(z^\alpha)$. Since $z \in I(H)$, Lemma 2.15(b) gives $z^\alpha \in I(H^\alpha)$. □

Lemma 3.5. The following hold.

(a) C is terminal in $\mathcal{C}(F)$.
(b) For each $\alpha \in A(t)$, C^α is normal in $C_F(t^\alpha)$.

Proof. By [Asc16 8.1.2.3], property (b) follows from (a). So we only need to show (a). By Hypothesis 3.1, C is maximal and subintrinsic in $\mathcal{C}(F)$. Since $m(T) = 4$ by Lemma 2.35(d), Theorem 7.4.14 of [Asc16] shows that $\Delta(C) = \emptyset$. It remains to verify the last condition of terminality. Let $\varphi \in Hom_F((t, T), S)$ so that $(t^\varphi, C^\varphi) \in \rho(C)$. We need to show that $(t^\varphi, C^\varphi) \in \rho_0(C)$. In other words, fixing $1 \neq a \in Q_{t^\varphi}$, we need to show that $a \in \mathcal{X}(C^\varphi)$. Note that $a \in \mathcal{X}(C^\varphi)$. 24
So if \tilde{a} is the unique involution in $\langle a \rangle$ and $\tilde{a} \in \tilde{X}(C^\varphi)$, then $a \in \tilde{X}(C^\varphi)$ by [Asc16 6.1.5]. So we may assume without loss of generality that a is an involution. Fix $\alpha \in \mathfrak{A}(a)$. It remains to show that $C^\varphi \alpha$ is a component of $C_F(a^\alpha)$ and thus $a \in \tilde{X}(C^\varphi)$.

Note first that, by definition of Q_t, $C^\varphi \subseteq C_F(a)$ and thus $C^{\varphi \alpha} \subseteq C_F(a^\alpha)$. By Lemma 2.15(b) applied with $((t, \varphi a))$ in place of (X, φ), we have $t^{\varphi a} \in \tilde{X}(C^{\varphi \alpha})$. Moreover, $[t^{\varphi a}, a] = 1$ by definition of Q_t and thus $[t^{\varphi a}, a^\alpha] = 1$. Hence, Lemma 2.16 yields $C^{\varphi \alpha} \subseteq C(C_F(a^\alpha))$.

We will argue next that $C^{\varphi \alpha}$ is sub intrinsic in $\mathcal{C}(C_F(a^\alpha))$. By Lemma 3.4, we have $C^\varphi_{\mathcal{C}^\mathcal{C}}(z^{\varphi \alpha}) = H^{\varphi \alpha}$ and $z^{\varphi \alpha} \in T(H^{\varphi \alpha})$. Recall that $H^{\varphi \alpha} \subseteq C_F(a^\alpha)$ and $T^{\varphi \alpha}, a^\alpha] = 1$. Hence, by Lemma 2.16 applied with $(z^{\varphi \alpha}, a^\alpha, H^{\varphi \alpha})$ in place of (X, Y, C), we have $z^{\varphi \alpha} \in T(C_F(a^\alpha))$. As $z^{\varphi \alpha} \in Z(H^{\varphi \alpha})$, this implies that $C^{\varphi \alpha}$ is indeed sub intrinsic in $\mathcal{C}(C_F(a^\alpha))$ as we wanted to prove.

As we have verified that $C^{\varphi \alpha}$ is a sub intrinsic member of $\mathcal{C}(C_F(a^\alpha))$, it follows now from [Asc17b 1.9.2] applied with $C_F(a^\alpha)$ in the role of \mathcal{F} and with $C^{\varphi \alpha}$ in the role of \mathcal{M} that $C^{\varphi \alpha}$ is contained in some component of $C_F(a^\alpha)$. Since C^φ is maximal in $\mathcal{C}(\mathcal{F})$ by Lemma 3.4, it follows from Lemma 2.17 applied with (t^φ, C^φ) in place of (t, \mathcal{C}) that $C^{\varphi \alpha}$ is a component of $C_F(a^\alpha)$. As argued above this shows (a).

By Lemma 2.39 we can and will assume that $q = 5^\ell$ for some $\ell \geq 0$. Moreover, for the remainder of this section, we will adopt Notation 2.33 with the following caveats: T is now in the role of S_a, and we set $R = R_a$ for short. Also, in the context of of Section 2.8, S was usually in the role of a Sylow subgroup of the Aschbacher-Chermak amalgam, while here it denotes a Sylow group of the ambient system \mathcal{F} of Hypothesis 3.1.

Lemma 3.6. The following hold:

(a) We have $\text{Aut}_F(R) = C_{\text{Aut}_F(R)}(E) \text{Aut}_C(R)$ and $O_2(\text{Aut}_F(R)) = C_{\text{Aut}_F(R)}(E)$.
(b) We have $N_S(R) = N_S(T) = C_S(E)T$.
(c) R is fully \mathcal{F}-normalized.
(d) We have $O_2(\text{Out}_F(R)) = O_2(\text{Out}_C(R))$.
(e) $O_2(\text{Aut}_F(R)) = C_{\text{Out}_C(R)}(E)$. In particular, $O_2(\text{Aut}_F(R)) = O_2(\text{Aut}_C(R))$.

Proof. Set $C := C_{\text{Aut}_F(R)}(E)$. Observe that $\text{Aut}_F(R)/C$ embeds into $\text{Aut}(E) \cong \text{GL}_3(2)$. As $\text{Aut}_C(R)/\text{Inn}(R) \cong \text{GL}_3(2)$ and $C_{\text{Aut}_C(R)}(E) = \text{Inn}(R)$, it follows that $\text{Aut}_F(R) = C \text{Aut}_C(R)$. By Lemma 2.35(a), T_k is homocyclic of rank 3 and exponent 2^k. Clearly, T_k is characteristic in R. So for every $1 \leq i < k$, the map $\Omega_{i+1}(T_k)/\Omega_i(T_k) \to \Omega_i(T_k)/\Omega_{i-1}(T_k), x\Omega_i(T_k) \mapsto x^2\Omega_{i-1}(T_k)$ is an isomorphism of $\text{Aut}_F(R)$-modules. So in particular, C acts trivially on $\Omega_{i+1}(T_k)/\Omega_i(T_k)$ for all $1 \leq i < k$. As $|R/T_k| = 2$, C acts also trivially on R/T_k. Hence, C is a 2-group and thus contained in $O_2(\text{Aut}_F(R))$. As E is an irreducible $\text{Aut}_F(R)$-module, it follows that $C = O_2(\text{Aut}_F(R))$. This shows (a).

As R is characteristic in T by Lemma 2.35(c), we have $N_S(T) \leq N_S(R)$. By (a), $C \text{Aut}_T(R)$ is the unique Sylow 2-subgroup of $\text{Aut}_F(R)$ containing $\text{Aut}_T(R)$. As $S_a(T) = N_S(T)$, it follows $\text{Aut}_S(R) \leq C \text{ Aut}_T(R)$ and thus $N_S(R) \leq C_S(E)T \leq C_S(z)$. Let now $x \in C_S(E) \leq C_S(z)$. As $z \in T(H)$, there exists $\alpha \in \mathfrak{A}(z)$ such that H^α is a component of $C_F(z^\alpha)$. Then $x^\alpha \in C_S(E^\alpha) \leq C_S(z^\alpha)$ and $(H^\alpha)^{x^\alpha}$ is a component of $C_F(z^\alpha)$ by Lemma 2.12. So by [Asc11 9.8.2], either $H^\alpha = (H^\alpha)^{x^\alpha}$ or H^α and $(H^\alpha)^{x^\alpha}$ form a commuting product. In the latter case, $E^\alpha = (E^\alpha)^{x^\alpha} \leq Z(H^\alpha)$, a contradiction to $Z(H^\alpha) = \langle z^\alpha \rangle$. Hence, $H^\alpha = (H^\alpha)^{x^\alpha}$ and
thus \((T^x)^\alpha = (T^\alpha)^{x^\alpha} = T^\alpha\). This implies \(x \in N_S(T)\). So we have shown that \(C_S(E) \leq N_S(T)\) and thus \(N_S(R) \leq C_S(E)T \leq N_S(T) \leq N_S(R)\). This yields (b).

For the proof of (c), let \(\gamma \in \mathfrak{A}(R)\). Recall from (b) that \(T \leq N_S(T) = N_S(R)\). So in particular, as \(T \in \mathcal{F}^f\), we have \(T^\gamma \in \mathcal{F}^f\) and \(N_S(T)^\gamma = N_S(T^\gamma)\). Thus it follows from Lemma 3.4 that we can apply (b) with \(t^\gamma, z^\gamma, C^\gamma \) and \(R^\gamma\) in place of \(t, z, C\) and \(R\) to obtain \(N_S(R^\gamma) = N_S(T^\gamma)\). This gives \(N_S(T^\gamma) = N_S(T) = N_S(R)\) and \(N_S(R^\gamma) = N_S(R^\gamma)\). Since \(R^\gamma\) is fully normalized, it follows that \(R\) is fully normalized. This shows (c). In particular, by the Sylow axiom, \(\text{Aut}_S(R) \in \text{Syl}_2(\text{Aut}_F(R))\) and so \(C = O_2(\text{Aut}_F(R)) \leq \text{Aut}_S(R)\). Thus, \(C = \text{Aut}_{C_S(E)}(R)\).

Lemma 3.7. There exists \(\sigma \in \mathfrak{A}(t)\) such that \(z^\sigma\) is fully \(F\)-centralized, and \(T^\sigma \in \mathcal{F}^f\).

Proof. Step 1: We show that there exists \(\chi \in \mathfrak{A}(t)\) with \(T^\chi = T\).

Let \(\alpha \in \mathfrak{A}(t)\). As \(T \in \mathcal{F}^f\), there exists \(\beta \in \mathfrak{A}(T^\alpha)\) with \(T^{\alpha\beta} = T\). It follows from Lemma 3.5(b) that \(T^\alpha \trianglelefteq C_S(t^\alpha)\), i.e., \(C_S(t^\alpha) \leq N_S(T^\alpha)\). Hence, as \(t^\alpha\) is fully centralized, \(t^{\alpha\beta}\) is fully centralized and \(\alpha\beta \in \mathfrak{A}(t)\). So \(\chi := \alpha\beta\) has the required properties.

Step 2: We show the existence of \(\sigma\).

By Step 1, we can choose \(\chi \in \mathfrak{A}(t)\) with \(T^\chi = T\). Let \(\gamma \in \mathfrak{A}(z)\). As \(T^\chi = T\) and \(Z(T) = \langle z \rangle\), we have \(z^\chi = z\) and \(N_S(T) \leq C_S(z)\). By Lemma 3.5(b), we have \(C^\chi \trianglelefteq C_T(t^\chi)\) and thus \(C_S(t^\chi) \leq N_S(T^\chi) = N_S(T) \leq C_S(z)\). Since \(t^\chi\) is fully centralized, it follows that \(t^{\chi\gamma}\) is fully centralized and \(\sigma := \chi\gamma \in \mathfrak{A}(t)\). Similarly, as \(T^\chi = T \in \mathcal{F}^f\), we conclude that \(T^\sigma = T^\gamma \in \mathcal{F}^f\). By the choice of \(\gamma\), \(z^\sigma = z^\gamma\) is fully centralized.

Recall that \(t\) centralizes \(T\). So by Lemma 3.4 and Lemma 3.7, we may assume that \(t\) and \(z\) are fully centralized. Moreover, we set \(V_R := RC_S(R)\) and \(Q_0 := C_S(T)\).

Lemma 3.8. The following hold.

(a) We have \(\mathcal{H} \subseteq C_F(Q_0)\).
(b) We have \(C_S(R) = EC_S(T)\), and hence \(V_R = RC_S(T)\).
(c) \(N_{N_{F(R)}(V_R)} = EC_S(T)\) and hence \(N_{C(R)} \leq N_{N_{F(R)}(V_R)}\).
(d) Let \(G_R\) be a model for \(N_{N_{F(R)}(V_R)}\) and \(N := C_{G_R}(V_R/R)\). Then \(N_1 := \langle T^N \rangle = (Q_0)R\) is a model for \(\mathcal{H}\).
(e) We have \(Q_0 = \langle z \rangle \times Q\) where \(Q = C_{Q_0}(N_1)\) with \(N_1\) as in (d).
(f) If \(Q\) is as in (e), then \(Q\) is the unique largest subgroup of \(S\) centralized by \(\mathcal{C}\). More precisely, \(\mathcal{C} \subseteq C_F(Q)\) and \(X \leq Q\) for all \(X \leq S\) with \(\mathcal{C} \subseteq C_F(X)\).
(g) If \(Q\) is as in (e), then \(Q\) is the unique largest member of \(\hat{\mathcal{X}}(\mathcal{C})\).

Proof. We start by proving (a) and (b). Recall that \(E = Z(R)\). As \(R \leq T\), clearly \(EC_S(T) \leq C_S(R)\), so for (b) we must show the other inclusion. Since \(z \in R\), we have \(C_S(R) = C_{C_S(z)}(R) \leq C_S(z)\). Now by our choice of notation, \(\langle z \rangle\) is fully \(F\)-centralized, so \(C_F(z)\) is a saturated fusion system on \(C_S(z)\). By Hypothesis 3.1, \(\mathcal{H}\) is a component of \(C_F(z)\). The normalizer of a component is constructed in [Asc16, §2.1], and thus, we may form \(N_{C_F(z)}(\mathcal{H})\) over the 2-group \(N_S(T) = \ldots\)
By Lemma 3.6(b), \(C_S(R) \leq N_S(R) = N_S(T) \), so we may form the product system
\[\hat{\mathcal{H}} := \mathcal{H}C_S(R) \]
as in Chapter 8 or in the normalizer \(N_C(\mathcal{H}) \). Thus \(\hat{\mathcal{H}} \) is a saturated subsystem of \(C_F(\mathcal{H}) \) with \(O^2(\hat{\mathcal{H}}) = O^2(\mathcal{H}) = \mathcal{H} = E(\hat{\mathcal{H}}) \). So \(\hat{\mathcal{H}} \) is a small extension of \(\mathcal{H}/Z(\mathcal{H}) \) in the sense of Definition 2.21. By Lemma 2.38(a), \(\mathcal{H} \) is tamely realized by \(H := \text{Spin}_2(5^2) \), so that by [AO16, Lemma 2.22], there is an extension \(\hat{H} = H C_S(R) \) of \(H \) that tamely realizes \(\hat{\mathcal{H}} \). By Lemma 2.38(b), each automorphism of \(H \) normalizing \(T \) and centralizing \(R \) is conjugation by an element of \(E \). Hence, \(Q_0 \leq C_S(R) \leq EC_S(H) \leq EC_S(T) \). This implies \(C_S(R) = EC_S(T) \) and \(Q_0 = C_E(T)C_S(H) = (z)C_S(H) = C_S(H) \). The first property gives (b), and the latter property yields (a).

Since \(R \) is fully normalized by Lemma 3.6(c), \(N_F(R) \) is saturated. Note that \(V_R \) is weakly closed and thus fully normalized in \(N_F(R) \). So \(N_{N_F(R)}(V_R) \) is saturated. Clearly \(N_{N_F(R)}(V_R) \) is constrained, as \(V_R \) is a centric normal subgroup of this fusion system. We show next that \(N_C(R) \subseteq N_{N_F(R)}(V_R) \). Let \(R \leq P \leq T \) and \(\varphi \in \text{Aut}_{N_C(R)}(P) \). By Alperin’s fusion theorem [AKO11, Theorem I.3.6], it is enough to show that \(\varphi \) extends to an element of \(\text{Aut}_{P}(PV_R) \) normalizing \(V_R \). Let \(\alpha \in \mathfrak{A}(P) \) and observe that \(\varphi^\alpha \in \text{Aut}_{P}(P^\alpha) \). By (b), \(V_R = R C_S(T) \leq P C_S(P) \). Thus \(V_R^\alpha \leq P^\alpha C_S(P^\alpha) \leq N_{\varphi^\alpha} \). As \(P^\alpha \) is fully normalized, it follows from the extension axiom that \(\varphi^\alpha \) extends to a morphism \(\psi : P^\alpha V_R^\alpha \to S \) in \(\mathcal{F} \). Note that \(R^{P^\alpha} = (R^\alpha)^{\varphi^\alpha} = R^\alpha \) as \(R^\alpha = R \). Since \(R \) is fully normalized and thus fully centralized, we have \(C_S(R)^{\alpha^\psi} = C_S(R^{P^\alpha}) = C_S(R^\alpha) = C_S(R)^{\alpha^\psi} \) and thus \(V_R^{\alpha^\psi} = R^\alpha C_S(R)^{\alpha^\psi} = V_R^\alpha \). So \(\psi \in \text{Aut}_{P}(PV_R) \) extends \(\varphi^\alpha \) and normalizes \(V_R^\alpha \). Hence, \(\hat{\varphi} := \psi^{\alpha^\psi^{-1}} \in \text{Aut}_{F}(PV_R) \) extends \(\varphi^\alpha \) and normalizes \(V_R \). This proves (c).

Now let \(G_R \) and \(N \) be as in (d), and set \(N_1 := \langle T^N \rangle \). (The model \(G_R \) for \(N_{N_F(R)}(R) \) exists and is unique up to isomorphism by [AKO11, Proposition III.5.8]. Moreover, \(C_{G_R}(V_R) \leq V_R \).)

Note that \(S_0 := N_S(R) \in \text{Syl}_2(G_R) \). By (b), \([V_R, T] \leq R \). As \(V_R \) and \(R \) are normal in \(G_R \), it follows \([V_R, T^G_R] \leq R \) and thus \(N_1 \leq \langle T^G_R \rangle \leq N \). Let \(P \leq T \) be essential in \(N_C(R) \). As \(\text{Out}_{C}(R) \cong GL_3(2) \), we observe that \(R \leq P, \ P/R \cong C_2 \times C_2 \) and \(\text{Out}_{N_C(R)}(P) \cong GL_2(2) \cong S_3 \). In particular, \(\text{Aut}_{N_C(R)}(P) = \langle \text{Aut}(P) \rangle^{\text{Aut}_{N_C(R)}(P)} \). Since \(\text{Aut}_{N_C(R)}(P) \leq \text{Aut}_{G_R}(P) \) by (c), it follows that \(\text{Aut}_{N_C(R)}(P) \leq \text{Aut}_{G}(P) \). Now we conclude similarly that \(\text{Aut}_{N_C(R)}(P) \leq \langle \text{Aut}(P) \rangle^{\text{Aut}_{N}(P)} \leq \text{Aut}_{N}(P) \). As \(P \) was arbitrary, the Alperin–Goldschmidt Fusion Theorem yields that \(N_C(R) \subseteq \mathcal{F}_{S_0 \cap N_1}(N_1) \).

Note that \(N/C_N(R) \) embeds into \(\text{Aut}_F(R) \). As \(C_G(V_R) \leq V_R \), and \(C_N(R) \) centralizes \(V_R/R \) and \(R, C_N(R) \) is a normal 2-subgroup of \(N \). So it follows from Lemma 3.6(d) that \(N/O_2(N) \cong \text{Out}_C(R) \cong GL_3(2) \) and \(O_2(N) = C_N(E) \leq C_{S_0}(E) \). Using Lemma 3.6(b), we conclude that \(O_2(N) \leq C_N(E) \leq N_S(T) \) and thus \([O_2(N), T] \leq C_E(R) = E \). Since \(O_2(N) \) and \(R \) are normal in \(N \), this implies \([O_2(N), N_1] \leq R \). In particular, noting \(O_2(N_1) = O_2(N) \cap N_1 \) and setting \(N := N/R \), it follows that \(O_2(N_1) \) is abelian. Observe that \(T/(T \cap O_2(N)) = T/R \) is isomorphic to a Sylow 2-subgroup of \(GL_3(2) \). Thus, \(TO_2(N)/O_2(N) \) is a Sylow 2-subgroup of \(N/O_2(N) \) and so \(TO_2(N) \) is a Sylow 2-subgroup of \(N \). In particular, \(TO_2(N_1) = (TO_2(N)) \cap N_1 \) is a Sylow 2-subgroup of \(N_1 \). Note that \(T \cap O_2(N_1) = T \cap O_2(N) = C_T(E) = R \). Thus \(T \) is a complement to \(O_2(N_1) \) in the Sylow 2-subgroup \(TO_2(N_1) \) of \(N_1 \). So by a Theorem of Gaschütz [KSJ4, Theorem 3.3.2], there exists a complement \(N_0 \) of \(O_2(N_1) \) in \(N_1 \). We choose a preimage \(N_0 \) of such a complement \(N_0 \) with \(R \leq N_0 \leq N_1 \). As \(N/O_2(N) \cong GL_3(2) \) is simple, we have \(N = O_2(N)N_1 = O_2(N)N_0 \). Since \(O_2(N) \cap N_0 = O_2(N_1) \cap N_0 = R \) and \(O_2(N) \) is centralized by \(N_1 \), it follows \(N = O_2(N) \times N_0 \). In particular, \(N_0 = O^2(N)R \) is normal in \(G_R \).
As $N_C(R) \subseteq \mathcal{F}_{S_0 \cap N}(N_1) \subseteq \mathcal{F}_{S_0 \cap N}(N)$, we have $\hmp(N_C(R)) \leq \hmp(\mathcal{F}_{S_0 \cap N}(N)) \leq O^2(N)$. Hence $T = \hmp(N_C(R))R \leq O^2(N)R = N_0$. In particular, $N_0 = N_1$, $O_2(N_1) = R$, $T \in \text{Syl}_2(N_1)$ and $N_1/R \cong \text{GL}_3(2)$. We show next that $N_C(R) = \mathcal{F}_T(N_1)$. We have seen already that $N_C(R) \subseteq \mathcal{F}_T(N_1)$. If P is essential in $\mathcal{F}_T(N_1)$, then it follows from $N_1/R \cong \text{GL}_3(2)$ that $R \leq P \leq T$, $P/R \cong C_2 \times C_2$ and $\text{Out}_N_1(P) \cong \text{GL}_2(2)$. As $\text{GL}_2(2) \cong \text{Out}_{N_C(R)}(P) \leq \text{Out}_N_1(P)$, it follows $\text{Aut}_{N_1}(P) = \text{Aut}_C(P)$. Hence, we have $N_C(R) = \mathcal{F}_T(N_1)$. Since $C_{N_1}(O_2(N_1)) \leq N_1 \cap C_N(E) = N_1 \cap O_2(N) = O_2(N_1)$, we conclude that N_1 is a model for $N_C(R)$. This completes the proof of (d).

We consider now the action of $N_1/R \cong \text{GL}_3(2)$ on $U_R := C_S(R) = C_{V_R}(R)$. Note that $E = Z(R)$ is central in U_R and recall that $U_R = E \mathcal{C}_S(T)$ by (b). In particular, $U_R/\Phi(C_T(S))$ is elementary abelian and thus $\Phi(U_R) \leq \Phi(C_T(S))$. If $E \cap \Phi(U_R)$ were non-trivial, then we would have $E \leq \Phi(U_R)$ as N_1 acts irreducibly on E. So it would follow that $E \leq C_T(S)$ contradicting $E \not\leq Z(T)$. This shows that $E \cap \Phi(U_R) = 1$. Set

\[\widehat{U}_R = U_R/\Phi(U_R). \]

As $\widehat{U}_R = \widehat{E} \mathcal{C}_S(\widehat{T})$ is elementary abelian, there is a complement to \widehat{E} in \widehat{U}_R which lies in $\widehat{C}_S(\widehat{T})$. So by a theorem of Gaschütz [KS04, Theorem 3.3.2], applied in the semidirect product $N_1 \ltimes \widehat{U}_R$, there exists a complement Q to E in \widehat{U}_R which is normalized by N_1. We choose the preimage Q of Q such that $\Phi(U_R) \leq Q \leq U_R$.

As $[U_R, N_1] \leq [V_R, N] \leq R$, we have $(Q, N_1) \leq [U_R, N_1] \leq U_R \cap R = Z(R) = E$. In particular, $(Q, N_1) \leq Q \cap \widehat{E} = 1$. So $[Q, N_1] \leq \Phi(U_R) \cap \widehat{E} = 1$. Recalling $Q_0 = C_S(T)$, we conclude $Q \leq C_{Q_0}(N_1)$. Observe that Q has index 2 in $Q_0 = C_S(T)$ as $\widehat{E} \cap C_T(S) = \{\widehat{z}\}$ has order 2. Hence, since $[z, N_1] \neq 1$, it follows $Q = C_{Q_0}(N_1)$ and $Q_0 = \langle z \rangle \times Q$. This proves (e).

By (a), Q_0 centralizes H, and by Lemma 2.41(b), we have $\mathcal{C} = \langle H, N_C(R) \rangle$. So if $X \leq Q_0 = C_S(T)$, then X contains \mathcal{C} in its centralizer if and only if it contains $N_C(R)$ in its centralizer. As $N_C(R) = \mathcal{F}_T(N_1)$ by (d) and Q is centralized by N_1, clearly every subgroup of Q contains $N_C(R)$ in its centralizer. Fix $X \leq C_S(T)$ with $N_C(R) \subseteq \mathcal{F}_X(X)$. To complete the proof of (f), we need to show that $X \leq Q_0$. To prove this let Θ be the set of all pairs (Y, ϕ) such that $RX \leq Y \leq V_R$, $\phi \in \text{Aut}_F(Y)$, $[Y, \phi] \leq R$, $\phi|_X = \text{id}_X$, and $\phi|_R \in \text{Aut}_R(R)$ has order 7. As $\text{Aut}_C(R)/\text{Inn}(N_1) \cong \text{GL}_3(2)$, there exists an element ϕ_0 of order 7 in $\text{Aut}_C(R)$. As $N_C(R) \subseteq \mathcal{F}_X(X)$, ϕ_0 extends to an automorphism $\phi \in \text{Aut}_F(RX)$ with $\phi|_X = \phi_0$, and for such ϕ we have $(RX, \phi) \in \Theta$. Thus $\Theta \neq \emptyset$ and we may fix $(Y, \phi) \in \Theta$ such that $|Y|$ is maximal. Assume first that $Y = V_R$. Then ϕ is a morphism in $N_{X_S}(V_R)$ and thus realized by conjugation with an element of G_R. Recall that $H_1 = O^2(H)/R$ is normal in G_R and contains T. Hence, $Q = C_{V_R}(H_1)$ is normal in G_R and thus ϕ-invariant. As $[V_R, \phi] \leq R$ by definition of Θ, it follows $[Q, \phi] \leq R \cap Q = 1$. As $U_R = E \mathcal{C}_S(T)$ is ϕ-fixed-point-free on $E^\#$, it follows $Q = C_{U_R}(\phi)$. By definition of Θ, we have $\phi|_X = \text{id}_X$ and thus $X \leq C_{U_R}(\phi) = Q$. So $X \leq Q$ if $Y = V_R$.

Assume now $Y < V_R$. Recall from above that $N_F(R)$ is saturated. So we can fix $\alpha \in \mathfrak{A}_{N_F(R)}(Y)$. Then $\phi^\alpha \in \text{Aut}_F(Y^\alpha)$ and $[Y^\alpha, \phi^\alpha] \leq R$ as $[Y, \phi] \leq R$ by definition of Θ. Recall also that $\phi|_R \in \text{Aut}_C(R)$ has order 7. By Lemma 3.6(d), we have $O^2(\text{Aut}_F(R)) = O^2(\text{Aut}_C(R))$. So we can conclude that $\phi^R|_R = (\phi^R|_R)^\alpha \in O^2(\text{Aut}_F(R))^\alpha = O^2(\text{Aut}_C(R)) \leq \text{Aut}_C(R)$. As $N_C(R) = \mathcal{F}_T(N_1)$ by (d), there exists thus $n \in N_1$ with $\phi^R|_R = c_n|_R$. Set $\psi := c_n|_{V_R} \in \text{Aut}_F(V_R)$. As $N_1 \leq N$, we have $[V_R, \psi] \leq R$. In particular, as $R \leq Y^\alpha \leq V_R$, we have $(Y^\alpha)^\psi = Y^\alpha$. Thus, $\chi := (\psi|_{Y^\alpha})^{-1} \circ \phi^\alpha \in \text{Aut}_F(Y^\alpha)$ is well-defined. Observe also that $\chi|_R = \text{id}_R$ and $[Y^\alpha, \chi] \leq R$, as
Thus, it follows thus from \([\text{Asc16}, \text{6.1.5}]\) that \(F \in N_{CS}(Y^\alpha)\) with \(\chi|_{Y^\alpha} = c_s|_{Y^\alpha}\). So \(\varphi^\alpha = \psi|_{Y^\alpha} \circ c_s|_{Y^\alpha}\) extends to \(\rho = \psi \circ c_s|_{V_R} \in \text{Aut}_{\mathcal{F}}(V_R)\). Since \([V_R, \psi] \leq R\), the automorphism \(\rho\) acts on \(V_R/R\) in the same way as \(c_s|_{V_R}\). So writing \(m\) for the order of \(s\), we have \([V_R, \rho^m] \leq R\). Moreover, \(\rho^m\) extends \((\varphi^\alpha)^m\). Since \(Y < V_R\), we have \(Y < W := N_{V_R}(Y)\). Note that \(R \leq Y^\alpha \leq W^\alpha \leq V_R\), so \([W^\alpha, \rho^m] \leq [V_R, \rho^m] \leq R\) and \(\rho^m|_{W^\alpha} \in \text{Aut}_{\mathcal{F}}(W^\alpha)\). Therefore, \(\psi := (\rho^m|_{W^\alpha})^{\alpha^{-1}} \in \text{Aut}_{\mathcal{F}}(W)\) with \([W, \psi] \leq R^\alpha^{-1} \leq R\). Moreover, \(\psi|R = (\varphi|R)^m \in \text{Aut}_C(R)\) has order 7, as \(\psi|R \in \text{Aut}_C(R)\) has order 7 and \(m\) is a power of 2. Moreover, \(\psi|X = (\varphi|X)^m = \text{id}_X\) as \(\varphi|X = \text{id}_X\). This shows \((W, \varphi) \in \Theta\). As \(|W| > |Y|\) and \((Y, \varphi) \in \Theta\) was chosen such that \(|Y|\) is maximal, this is a contradiction. So we have shown that \(Y = V_R\). As argued before, this yields \(X \leq Q\) and thus shows (f).

It remains to prove (g). By (f), \(C \subseteq \mathcal{F}(Q)\) and \(X \leq Q\) for every \(X \leq C_S(T)\) with \(C \subseteq \mathcal{F}(X)\). In particular, \(X \leq Q\) for every \(X \in \mathcal{X}(C)\). Moreover, \(t \in Q\) and \(Q \in \mathcal{X}(C)\). As \(t \in T\), it follows thus from \([\text{Asc16}, \text{6.1.5}]\) that \(Q \in \mathcal{X}(C)\). This shows (g).

Lemma 3.9. \(C\) is nearly standard.

Proof. By Lemma \([3.5,(a)]\), \(C\) is terminal in \(\mathcal{E}(\mathcal{F})\). By Lemma \([3.8,(g)]\), the collection \(\mathcal{X}(C)\) has a unique maximal member. Hence, \(C\) is nearly standard by \([\text{Asc16}, \text{Proposition 7}]\). □

Lemma 3.10. \(\text{Aut}_{\mathcal{F}}(T) \leq \text{Aut}(C)\).

Proof. Let \(\alpha \in \text{Aut}_{\mathcal{F}}(T)\) and note that \(\alpha \in C_{\mathcal{F}}(z)\). Recall that \(z\) was chosen to be fully normalized. Thus, \(H\) is a component of \(C_{\mathcal{F}}(z)\) as \(z \in \mathcal{I}(H)\). It follows from \([\text{Asc11}, \text{9.7}]\) that there is a unique component of \(C_{\mathcal{F}}(z)\) with \(\mathcal{S}\) group \(T\), so that \(\mathcal{H}^\alpha = H\) by Lemma \([\text{2.12}, (b)]\). Since \(T\) is fully \(\mathcal{F}\)-normalized by Hypothesis \([3.1]\), \(\alpha\) extends to an automorphism \(\tilde{\alpha}\) of \(Q_0T = C_S(T)T = C_S(R)T\) with the last equality by Lemma \([3.8, (b)]\). From Lemma \([2.35, (c)]\), \(R\) is characteristic in \(T\), so we have that \(R^\alpha = R\), and hence that \(\tilde{\alpha}\) normalizes \(C_S(R)\). Thus, \(\alpha \in N_{N_{\mathcal{F}}(V_R)}(R)\), a model for which is, by definition, \(G_R\). We may therefore choose \(g \in N_{G_R}(T)\) such that \(\alpha = c_0|_T\). As \(H := C_{G_R}(V_R/R)\) is a normal subgroup of \(G_R\), \(g\) leaves invariant \(O^2(H)R = (T^H)\), which is a model for \(N_{\mathcal{C}}(R)\) by Lemma \([3.8, (d)]\), whence \(\alpha\) normalizes \(N_{\mathcal{C}}(R)\). Thus, \(\alpha \in \text{Aut}(\langle H, N_{\mathcal{C}}(R) \rangle) = \text{Aut}(\mathcal{C})\), the equality coming from the generation statement of Lemma \([2.41, (b)]\), and now the assertion follows as \(\alpha\) was chosen arbitrarily. □

4. The centralizer of \(C\) and the elementary abelian case

We operate from now until the end of Section \([\text{6}]\) under the following hypothesis, although we will sometimes state it again for emphasis.

Hypothesis 4.1. Suppose \(\mathcal{F}\) is a saturated 2-fusion system on \(S\) and \(C \in \mathcal{E}(\mathcal{F})\) is a standard subsystem of \(\mathcal{F}\) over \(T \in \mathcal{F}\). Assume \(C \cong \mathcal{F}_{\text{Sol}}(q)\) and \(C\) is not a component of \(\mathcal{F}\). Write \(Q\) for the centralizer of \(C\) (cf. Remark \([2.23]\)), and let \(Q\) be the Sylow group of \(Q\). Let \(z\) be the unique involution in \(Z(T)\).

Lemma 4.2. One of the following holds.

(a) \(Q\) is elementary abelian, or
(b) \(Q\) is of 2-rank 1.
Proof. This is a direct consequence of Hypothesis 4.1, Lemma 2.46 and \cite{Asc16} Theorem 8. \hfill \square

Proposition 4.3. Assume Hypothesis 4.7. Then Q has 2-rank 1.

Proof. The subsystem Q is tightly embedded by \cite{Asc16} 9.1.6.2. Assume that Q has 2-rank larger than 1. Then by Lemma 4.2, Q is elementary abelian and $|Q| > 2$. Moreover, by Lemma 2.29, $\mathcal{F}_Q(Q)$ is tightly embedded in \mathcal{F}. By \cite{Asc16} 9.4.11, we can fix $P \in Q^x$ such that $P \leq N_S(Q)$ and $P \neq Q$. By \cite{Asc16} 3.1.8, we have

$$P \cap Q = 1.$$

As C is standard, we have $C \trianglelefteq N_F(Q)$. In particular, we can form the product CP inside of $N_F(Q)$. Q is normal in $N_F(Q)$, we have $Q \not\leq P^{\mathbb{C}P}$. Furthermore, if $\alpha \in \text{Hom}_{CP}(P, TP)$ then α induces the identity on PT/T by the construction of CP in \cite{Hen13} and since $P \cong Q$ is abelian. So $TP = TP^\alpha$. Hence, replacing P by a suitable CP-conjugate of P, we may assume

$$P \in (CP)^f.$$

Then by \cite{Asc16} Theorem 3.4.2, $\mathcal{F}_P(P)$ is tightly embedded in CP.

By \cite{HL18} Theorem 3.10, $\text{Out}(C)$ is cyclic. Note that $N_S(Q)$ induces automorphisms of C via conjugation as $C \trianglelefteq N_F(Q)$. Moreover, the elements of $N_S(Q)$ inducing inner automorphisms of C are precisely the elements in $TC_S(T)$. Thus, $N_S(Q)/TC_S(T)$ is cyclic. By Lemma 2.26 and Lemma 2.37, $C_S(T) = \langle z \rangle Q$ and so $TC_S(T) = TQ$. Since $P \cong Q$ is elementary abelian, it follows

$$P \cap (TQ) \neq 1.$$

Let $1 \neq x \in P \cap (TQ)$ and write $x = uv$ with $u \in T$ and $v \in Q$. Note that u and v commute. As x is an involution, it follows that u and v have order at most 2. If $u = 1$ then $x = v \in P \cap Q$ contradicting $P \cap Q = 1$. Hence u is an involution. Let $\alpha \in \text{Hom}_{CP}(C_{TP}(x), TP)$ such that $x^\alpha \in (CP)^f$. We proceed now in several steps to reach a contradiction.

Step 1: We show that $x^\alpha \in C_S(T)$ and $x^\alpha = zv^\alpha$ with $v^\alpha \in Q$.

For the proof note first that, as $C \trianglelefteq N_F(Q)$, we have $T \trianglelefteq N_S(Q)$ and thus $Z(T) = \langle z \rangle \trianglelefteq N_S(Q)$. Hence, z is central in $N_S(Q)$ and thus fully centralized in CP. As $u \in T$ is an involution and all involutions in T are C-conjugate by Lemma 2.36, the element u is CP-conjugate to z. Hence, there exists $\varphi \in \text{Hom}_{CP}(C_{TP}(u), TP)$ such that $u^\varphi = z$. Note that $x,v \in C_{TP}(u)$, since $x = uv$ and u and v commute. We obtain $x^\varphi = zv^\varphi$, where $v^\varphi \in Q \leq C_S(T)$, as $v \in Q$ and φ is a morphism in $N_F(Q)$. Since $z \in Z(T)$, it follows $T \leq C_S(x^\varphi)$. Recall that α was chosen such that $x^\alpha \in (CP)^f$. Thus, using Lemma 2.3, we can conclude that $T \leq C_S(x^\alpha)$ and so $x^\alpha \in C_S(T)$. Note that, $u,v \in C_{TP}(x)$ as u and v commute. Moreover, since α is a morphism in $N_F(Q)$, we have $v^\alpha \in Q \leq C_S(T)$. So $x^\alpha = u^\alpha v^\alpha$ and $u^\alpha = x^\alpha(v^\alpha)^{-1} \in C_S(T)$. As T is strongly closed in $N_F(Q)$, we have $u^\alpha \in T$ and thus $u^\alpha \in Z(T) = \langle z \rangle$. As $u \neq 1$, it follows $u^\alpha = z$ and $x^\alpha = zv^\alpha$ with $v^\alpha \in Q$. This completes Step 1.

Step 2: We show $C_C(z) \subseteq C_{CP}(x^\alpha)$.

For the proof, we may assume that $x^\alpha \neq z$. By definition of Q, we have $C \subseteq C_F(Q)$. By Step 1, $x^\alpha \in Q(z)$. Therefore $C_C(z) \subseteq C_F(Q(z)) \subseteq C_{N_F(Q)}(x^\alpha)$. Let $R \in C_C(z)^{C_F}$ and let $\chi \in \text{Aut}_{C_C(z)}(R)$ be an arbitrary element of odd order. Then χ extends to some $\hat{\chi} \in \text{Aut}_{N_F(Q)}(R(x^\alpha))$ with $(x^\alpha)^{\hat{\chi}} = x^\alpha$. The order of $\hat{\chi}$ equals the order of χ and is therefore odd. As $x^\alpha \neq z$ is by Step 1 an involution centralizing T, we have $x^\alpha \not\in T$ and thus $(R(x^\alpha)) \cap T = R$. Moreover, clearly $[R(x^\alpha), \hat{\chi}] \leq R$ and $\hat{\chi}|_R = \chi$ is a morphism in C. By \cite{BLO03} Lemma 6.2, we have $R \in C^e$. So it follows from the definition of CP in \cite{Hen13} that $\hat{\chi}$ is a morphism in CP. Hence, χ is a morphism
in $C_{CP}(x^α)$. By Alperin’s fusion theorem [AKO11, Theorem I.3.6], $C_C(z)$ is generated by $\text{Im}(T)$ and all the automorphism groups $O^2(\text{Aut}_{C_C(z)}(R))$ with $R \in C_C(z)^{\text{fc}}$. As $T \leq C_S(x^α)$, it follows that $C_C(z) \subseteq C_{CP}(x^α)$.

Step 3: We show that $P^α \leq C_{CP}(x^α)$ and $P^α \cap T \leq \langle z \rangle$.

As remarked above, $F \in C_P(P)$ is tightly embedded in CP. Hence, it follows from (T1) that $P^α \leq N_{CP}(x^α) = C_{CP}(x^α)$. In particular, as $C_C(z) \subseteq C_{CP}(x^α)$ by Step 2, it follows that $P^α \cap T$ is strongly closed in $C_C(z)$. As $P^α \cap T$ is abelian, [AKO11, Corollary I.4.7] gives that $P^α \cap T$ is normal in $C_C(z)$. Since $C_C(z)/\langle z \rangle$ is simple, this implies $P^α \cap T \leq \langle z \rangle$ as required.

Step 4: We show that $[T, P^α] = 1$.

As $C_C(z) = O^p(C_C(z))$, we have

$$T = \text{hyp}(C_C(z)) = \langle [Y, β] : Y \leq T, β \in \text{Aut}_{C_C(z)}(Y) \rangle$$

Let $Y \leq T$ and $β \in \text{Aut}_{C_C(z)}(Y)$ of odd order. We will show that $[Y, β, P^α] = 1$, which is sufficient to complete Step 4. By Step 2, $C_C(z) \subseteq C_{CP}(x^α)$. As $P^α \leq C_{CP}(x^α)$ by Step 3, we can thus extend $β$ to $\hat{β} \in \text{Aut}_{C_{CP}(YP^α)}$ with $(P^α)^\hat{β} = P^α$. By the definition of CP in [Hen13] and since P is abelian, we have $[P^α, \hat{β}] \leq P^α \cap T \leq \langle z \rangle$, where the last inclusion uses Step 3. In particular, $[P^α, \hat{β}, Y] = 1$. As $P^α \leq C_{CP}(x^α)$ and T centralizes $x^α$ by Step 1, T normalizes $P^α$. Hence, again using Step 3, we conclude $[Y, P^α] \leq [T, P^α] \leq T \cap P^α \leq \langle z \rangle$ and so $[Y, P^α, \hat{β}] = 1$.

It follows now from the Three-Subgroup-Lemma that $[Y, β, P^α] = [\hat{β}, Y, P^α] = 1$. This finishes Step 4.

Step 5: We now derive the final contradiction.

By Step 4, we have $P^α \leq C_S(T)$. As we saw above, $C_S(T) = Q(z)$ and thus Q has index 2 in $C_S(T)$. Since $|P^α| = |Q| > 2$, it follows $P^α \cap Q \neq 1$. However, as $Q \not\leq P^{CP}$, the subgroup $P^α$ is an F-conjugate of Q not equal to Q. Hence, by [Asc16, 3.1.8], we have $P^α \cap Q = 1$. This contradiction completes the proof.

Assuming Hypothesis [4.1] we are thus left with the case that Q has 2-rank 1, i.e. is either cyclic or quaternion. We end this section with a lemma which handles a residual situation occurring in this context. It will be needed both in Section 5 to exclude the quaternion case and in Section 6 to handle the case that Q is cyclic.

Lemma 4.4. Assume Hypothesis [4.1] with Q of 2-rank 1. Let t be the unique involution in Q and fix a subnormal subsystem F_0 of F over $S_0 \leq S$ such that $t \in S_0$. Then the following hold:

(a) $\langle t \rangle$ is fully F_0-normalized.

(b) If $[T, C_{S_0}(t)] \neq 1$, then C is a component of $C_{F_0}(t)$. Moreover,

$$\Omega_1(C_{S_0}(C_{S_0}(t))) = \Omega_1(Z(C_{S_0}(t))) = \langle t, z \rangle.$$

(c) Assume $Q \leq S_0$ and $C \subseteq C_{F_0}(t)$. If $\langle t \rangle \leq Z(S_0)$, then $\langle t \rangle$ is not weakly F_0-closed in $Z(S_0)$.

Proof. As Q is tightly embedded, there is a fully F-normalized F-conjugate of $\langle t \rangle$ in Q by [Asc16, 3.1.5]. It follows that $\langle t \rangle$ is fully F-normalized, since t is the unique involution in Q. So (a) follows from [2.4]. In particular, $C_{F_0}(t)$ is saturated.
In the proof of (b) and (c), we will use that C is normal in $C_F(t)$ by (S2). In particular C is a component of $C_F(t)$. In addition, we will use that $C_S(T) = \langle z \rangle Q$ from Lemma 2.26 and Lemma 2.37.

For the proof of (b) assume that $[T, C_{S_0}(t)] \neq 1$. By (a) and [Asc11] 8.23.2, $C_{F_0}(t)$ is subnormal in $C_F(t)$. So by [Asc11] 9.6, C is a component of $C_{F_0}(t)$ as $[T, C_{S_0}(t)] \neq 1$. In particular, $T \leq C_{S_0}(t)$. As C is normal in $C_F(t)$, we have $T \leq C_S(t)$ and in particular, $z \leq Z(C_{S_0}(t))$. As $C_S(T) = \langle z \rangle Q$, we obtain $\langle t, z \rangle \leq \Omega_1(Z(C_{S_0}(t))) \leq \Omega_1(C_{S_0}(t)) \leq \Omega_1(C_S(T)) = \langle t, z \rangle$ and this implies that (b) holds.

For the proof of (c) assume now that $Q \subseteq S_0$, $C \subseteq C_{F_0}(t)$, and $\langle t \rangle \leq Z(S_0)$ is weakly F_0-closed in $Z(S_0)$. Then in particular, $S_0 = C_{S_0}(t)$ and $C_{F_0}(t)$ is saturated. As $T \leq C_{S_0}(t)$ is nonabelian, (b) gives that C is a component of $C_{F_0}(t)$ and $\Omega_1(Z(S_0)) = \langle t, z \rangle$. As C is normal in $C_F(t)$, one easily checks that C is $C_{F_0}(t)$-invariant (using the equivalent definition of F-invariant subsystems given in [AKO11] Proposition I.6.4(d))). Hence, by a theorem of Craven [Cra11], $C = O^f(C)$ is normal in $C_{F_0}(t)$. We proceed now in several steps to reach a contradiction.

Step 1: We show that (t) is not weakly F_0-closed. Suppose this is false. Then for every essential subgroup P of F_0, we have $t \in Z(S_0) \leq C_{S_0}(P) \leq P$ and t is fixed by $\text{Aut}_{F_0}(P)$. So by Alperin’s Fusion Theorem [AKO11] Theorem I.3.6], we have $t \in Z(F_0)$. Hence, C is a component of $C_{F_0}(t) = F_0$. As F_0 is subnormal in F, it follows that C is subnormal in F and thus a component of F, contradicting Hypothesis 1.1. This completes Step 1.

As shown in Step 1, there exists an F_0-conjugate f of t with $f \neq t$. Fix such f from now on.

Step 2: We show that $f \notin QT$ and t is weakly F_0-closed in QT.

Assuming $f \in QT$, we would have $f \in \Omega_1(QT) \leq T(t)$. So $f \in T$ or $f = ut$ with $u \in T$. In the latter case, since $t \in Q \leq C_S(T)$ and f is an involution, u is an involution. By Lemma 2.36, all involutions in T are C-conjugate. Moreover $C \subseteq C_{F_0}(t)$. So if $f \in T$, then f is F_0-conjugate to z, and if $f = ut$ for some involution $u \in T$, then f is F_0-conjugate to zt. In both cases we get a contradiction to the assumption that t is F_0-closed in $Z(S_0)$. So $f \notin QT$. Because of the arbitrary choice of f, this completes Step 2.

By Lemma 2.39, we can and will assume that $q = 5^{2j}$ for some $l \geq 0$. Moreover, we adopt Notation 2.34 except that T is now in the role of S_0. As C is normal in $C_{F_0}(t)$, we can form the product system $C \langle f \rangle$ (as defined in [Hen13]) in $C_{F_0}(t)$ over the 2-group $T \langle f \rangle$.

Step 3: We show that f is $C \langle f \rangle$-conjugate to every member of the coset fE.

Note first that $F^*(C \langle f \rangle) = C$. Thus, by [HL18] Theorem 4.3, $C \langle f \rangle$ is uniquely determined as the split extension of C by a field automorphism of order 2. As all involutions in $T \langle f \rangle - T$ are $C \langle f \rangle$-conjugate by Proposition 2.42(a), after conjugating in $C \langle f \rangle$, we may take f to be this field automorphism. Appealing now to Proposition 2.42(b), we have $C_C(f) = C_1$, where C_1 has Sylow group $C_T(f)$ and is isomorphic to $F_{\text{Sol}}(q_{-1})$. Then $T_{k-1} = O^1(T_k)$ is the torus of C_1. Moreover, there is an element of T_k that conjugates f to fz (for example, an element in $T_k - T_{k-1}$ that powers to z). Recall from Notation 2.34 that $E = \Omega_1(T_k) = \Omega_1(T_{k-1})$. Since $\text{Aut}_{C_1}(T_{k-1})$ acts transitively on $E^\#$ by Lemma 2.35(b), we see that indeed f is $C \langle f \rangle$-conjugate to every element of fE.

Step 4: We derive the final contradiction.
Since C is normal in $C_F(t)$ and $S_0 \leq C_S(t)$, S_0 induces automorphisms of C by conjugation. As $C_S(T) = Q \langle z \rangle$ and $\text{Aut}(C)$ is cyclic by [HL18, Theorem 3.10], it follows that $QT = TC_S(T)$ is normal in S_0 and S_0/QT cyclic. Now let $\alpha \in \mathfrak{A}_{F_0}(f)$ with $f^\alpha = t$. Then α is defined on $\langle f \rangle E$ and, hence t is F_0-conjugate to every member of the coset tE^α by Step 3. Since E^α is of 2-rank 3, while S_0/QT is cyclic, it follows that $E^\alpha \cap QT \neq 1$. For $1 \neq e \in E^\alpha \cap QT$, t is conjugate to $te \in QT$. This contradicts Step 2. \hfill \qed

5. The Quaternion Case

In this section we show, assuming Hypothesis 4.1, that Q is not quaternion using Aschbacher’s classification of quaternion fusion packets [Asc17a]. When combined with Proposition 4.3 the results of this section reduce to the case in which Q is cyclic, which is handled in Section 6.

The Classical Involution Theorem identifies the finite simple groups which have a classical involution, that is, an involution whose centralizer has a component (or solvable component) isomorphic to $SL_2(q)$ (or $SL_2(3)$) [Asc77a, Asc77b]. With the exception of M_{11}, the simple groups having a classical involution are exactly the groups of Lie type in odd characteristic other than $L_2(q)$ or $\mathcal{G}_2(q)$, where the $SL_2(q)$ components in involution centralizers are fundamental subgroups generated by the center of a long root subgroup and its opposite.

In a group with a classical involution, the collection of these $SL_2(q)$ subgroups satisfies special fusion theoretic properties that were identified and abstracted by Aschbacher in [Asc77a]. Hypothesis Ω. More recently, Aschbacher has formulated these conditions in fusion systems in the definition of a quaternion fusion packet, and his memoir [Asc17a] classifies all such packets.

Definition 5.1. A quaternion fusion packet is a pair $\tau = (\mathcal{F}, \Omega)$, where \mathcal{F} is a saturated fusion system on a finite 2-group S, and Ω is an \mathcal{F}-invariant collection of subgroups of S such that

(QFP1) There exists an integer m such that for all $K \in \Omega$, K has a unique involution $z(K)$ and is nonabelian of order m.
(QFP2) For each pair of distinct $K, J \in \Omega$, $|K \cap J| \leq 2$.
(QFP3) If $K, J \in \Omega$ and $v \in J - Z(J)$, then $v^F \cap C_S(z(K)) \subseteq N_S(K)$.
(QFP4) If $K, J \in \Omega$ with $z = z(K) = z(J)$, $v \in K$, and $\varphi \in \text{Hom}_{C_F(z)}(\langle v \rangle, S)$, then either $v^\varphi \in J$ or v^φ centralizes J.

We assume the following hypothesis until the last result in this section.

Hypothesis 5.2. Hypothesis 4.1 and its notation hold with Q quaternion. Let t be the unique involution in Q. Set $\Omega = Q^F$, denote by \mathcal{F}° the subnormal closure of Q in \mathcal{F} over the subgroup $S^\circ \leq S$, and set $\Omega^\circ = Q^{F^\circ}$.

A tightly embedded subsystem with quaternion Sylow 2-subgroups, such as the centralizer system \mathcal{Q} in Hypothesis 5.2 always yields a quaternion fusion packet in a straightforward way.

Lemma 5.3. (\mathcal{F}, Ω) is a quaternion fusion packet.

Proof. We go through the list of axioms. (QFP1) holds by definition of Ω. Note that $\Omega \subseteq \mathcal{P}^*$ in the sense of Definition 3.1.9 of [Asc16]. Hence, by [Asc16 3.1.12.2], $K \cap J = 1$ for each pair of distinct $K, J \in \Omega$. This shows that (QFP2) holds, and that any element of S centralizing $z(K)$ must normalize K, so that (QFP3) also holds. Finally, under the hypotheses of (QFP4), $K = J$ in the current situation. Fix $1 \neq v \in K$ and $\varphi \in \text{Hom}_{C_F(z(K))}(\langle v \rangle, S)$. Then $z(K) \in \langle v \rangle$, and...
\[(K)^\varphi = z(K). \] Also, \(\langle v \rangle \in \mathcal{P} \), and \(K \in \mathcal{P}^* \), in the sense of Definition 3.1.9 of \[\text{Asc16}\]. Since \(\langle v \rangle^\varphi \cap K > 1 \), we see from \[\text{Asc16} 3.1.14\] (applied with \(\langle v \rangle \), \(\varphi \), and \(K \) in the role of \(F \), \(\psi \), and \(R \)) that \(\langle v \rangle^\varphi \leq K \). This shows that (QFP4) holds.

Lemma 5.4. Let \(F_0 \) be a subnormal subsystem of \(F \) over the subgroup \(S_0 \leq S \). Assume that \(Q \leq S_0 \), and that \(C \subseteq C_{F_0}(t) \). Then \(Q^{F_0} \neq \{\} \).

Proof. Suppose on the contrary that \(Q^{F_0} = \{\} \). Then \(Q \) is normal in \(S_0 \), and so \(t \in Z(S_0) \). Let \(\alpha \) be a morphism in \(F_0 \) with \(t^\alpha \in Z(S_0) \). By the extension axiom, we may assume that \(\alpha \) is defined on \(Q \), and then \(Q^\alpha = Q \) by assumption, so that \(t^\alpha = t \). This shows that \(\langle t \rangle \) is weakly \(F_0 \)-closed in \(Z(S_0) \), contradicting Lemma 4.4(c).

Lemma 5.5. \(C \) is a component of \(C_{F_0}(t) \). In particular, \(C \) is contained in \(C_{F_0}(t) \).

Proof. Define \(\text{sub}_0(F, Q) = F \), \(S_0 = S \), and for each \(i \geq 0 \), define \(\text{sub}_{i+1}(F, Q) \) to be the normal closure of \(Q \) in \(\text{sub}_i(F, Q) \) by Sylow group \(S_{i+1} \). Then \(F_{i+1} \leq F_i \) for each \(i \geq 0 \), and \(F^0 \) is by definition the terminal member of this series. By Lemma 4.4(a), \(\langle t \rangle \) is fully normalized in \(F_i \) for \(i \geq 0 \), so \(C_{F_i}(t) \) is saturated for each \(i \).

We argue by contradiction, and fix the least nonnegative integer \(i \) such that \(C \) is not a component of \(C_{F_{i+1}}(t) \). Thus, as \(C \) is normal in \(C_F(t) \) by (S2), we have that \(i > 0 \) and that \(C \) is a component of \(C_{F_i}(t) \). By Lemma 5.4, we have that \(Q^{F_i} \neq \{\} \). Fix \(Q' \in Q^{F_i} - \{\} \). As \(Q \) is tightly embedded in \(F \), we have \(Q \cap Q' = 1 \) by \[\text{Asc16} 3.1.12.2\], and we have \(Q' \leq C_{S_i}(Q) \leq C_{S_i}(t) \) by \[\text{Asc16} 3.3.5\]. By definition of \(F_{i+1} \), we have \(Q' \leq S_{i+1} \) and thus \(Q' \leq C_{S_{i+1}}(t) \). As \(C_S(T) = Q(T) \) by Lemma 2.26 and Lemma 2.37, it follows \([Q', T] \neq 1 \), and thus \([T, C_{S_{i+1}}(t)] \neq 1 \). Hence, \(C \) is a component of \(C_{F_{i+1}}(t) \) by Lemma 4.4(b). This contradicts the choice of \(i \).

Lemma 5.6. The pair \((F^0, \Omega^0) \) is a quaternion fusion packet, \(F^0 \) is the normal closure of \(Q \) in \(F^0 \), and \(F^0 \) is transitive on \(\Omega^0 \).

Proof. Note that \((F^0, \Omega^0) \) is a quaternion fusion packet by Lemma 5.5 and \[\text{Asc17a} \text{Lemma 6.4.2.1}\]. Recall that \(F^0 \) is the subnormal closure of \(Q \) in \(F \). So the second statement follows from the definition of subnormal closure, while the third holds by definition of \(\Omega^0 \).

Now remove the standing assumption that Hypothesis 5.2 holds.

Proposition 5.7. Assume Hypothesis 4.1. Then \(Q \) is cyclic.

Proof. We argue by contradiction, so that \(Q \) is quaternion by Proposition 4.1. Hence, Hypothesis 5.2 holds, and so we adopt the notation there. By Lemma 5.6, the pair \((F^0, \Omega^0) \) satisfies the hypotheses of Theorem 1 of \[\text{Asc17a}\]. Hence, by that theorem, one of the following holds: either

1. \(t \in Z(F^0) \), or
2. \(t \in O_2(F^0) - Z(F^0) \), or
3. there is a finite group \(G \) with Sylow 2-subgroup \(S^0 \) such that \(F^0 = F_{S^0}(G) \), and one of the following holds,
 a. \(S^0 \) has 2-rank at most 3, or
 b. \(G \in \text{Lie}(r) \) for some odd prime \(r \), or
 c. \(G \) is quasisimple with \(Z(G) \) a 2-group, and \(G/Z(G) \cong Sp_6(2) \) or \(\Omega_8^+(2) \).
Observe that in all cases,
\begin{equation}
(C_{F^0} = C) \text{ is a component of } C_{F^0}(t)
\end{equation}
by Lemma 5.3.

In Case (1), C is a component of $C_{F^0}(t) = F^0$. Hence C is a component of F since F^0 is subnormal in F, contrary to Hypothesis 4.1. In Case (2), the hypotheses of \cite[Theorem 2]{Asc17a} hold for (F^0, Ω^0), and then by \cite[Lemma 6.7.3]{Asc17a}, we have that F^0 is constrained. Thus, $C_{F^0}(t)$ is also constrained, and hence $C \leq E(C_{F^0}(t)) = 1$, a contradiction.

Case (3)(a) yields a contradiction, since $QT \leq S^0$ is of 2-rank 5 by Lemma 2.35(d). In Case (3)(b), note that $C_{F^0}(t)$ is the fusion system of $C_G(t)/O(C_G(t))$ by \cite[I.5.4]{AKO11}. So by (5.8) and Lemma 2.48, the hypothesis of Lemma 2.49 hold, and so there is a component K of $C_G(t)/O(C_G(t))$ such that C is the 2-fusion system of K by that lemma. This contradicts the fact that C is exotic \cite[Proposition 3.4]{LO02}.

In Case 3(c) we may assume that Case (2) does not hold, so that $t \notin Z(F^0)$. Then $t \notin Z(G)$. As $Sp_6(2)$ and $\Omega_8^+(2)$ are of characteristic 2-type and as $t \notin Z(G)$, we have that $C_G(t)$ is of characteristic 2. Hence $C_{F^0}(t)$ is constrained. We therefore obtain the same contradiction here as in Case (2).

\section{6. The Cyclic Case and the Proof of Theorem \ref{main_thm}}

In this section, we finish the proof of Theorem \ref{main_thm}. Using Theorem 3.3 and Proposition 5.7, one quickly reduces to the case that C is standard and the centralizer Q of C in S is cyclic. We therefore assume the following hypothesis and notation for most of this section.

\textbf{Hypothesis 6.1.} Hypothesis 4.1 holds with Q cyclic. Write $\Omega_1(Q) = \langle t \rangle$, $S_t = C_S(t)$, and $F_t = C_F(t)$.

\textbf{Lemma 6.2.} Assume Hypothesis 4.1. Then the following hold.

(a) $\langle t \rangle \in F^1$,
(b) $C_S(T) = Q(z)$,
(c) $\Omega_1(C_S(S_t)) = \Omega_1(Z(S_t)) = \langle t, z \rangle$,
(d) if $t \in Z(S)$, then $\langle t \rangle$ is not weakly F-closed in $Z(S)$, and
(e) t is not F-conjugate to z.

\textbf{Proof.} Parts (a),(c) and (d) follow from Proposition 4.4 applied with $F_0 = F$, while (b) follows from Lemma 2.26 and Lemma 2.37.

It remains to prove (e). As Q is cyclic, we have $Q = Q$. By (T1) in the definition of tight embedding (Definition 2.28), we have $Q = Q \cong F_t$. Further, $Q = C_{S_t}(\bar{C})$ by \cite[9.1.6.3]{Asc16}. Write quotients by Q with bars. Note that $C_{S_t}(\bar{C})$ is trivial by \cite[Lemma 1.14]{Lyn15}, and $\bar{C} \cong C$. Thus, $F^*(F_t) = \bar{C}$ is isomorphic to a Benson-Solomon system. By \cite[Theorem 4.3]{HL18}, this quotient is therefore a split extension of \bar{C} by a 2-group of outer automorphisms, and in particular, $O^2(F_t) = \bar{C}$. It follows that $O^2(F_t) \leq Q\cdot C$. Since $O^2(Q\cdot C) = \bar{C}$ and since $O^2(O^2(F_t)) = O^2(F_t)$, we have that $O^2(F_t) = \bar{C}$. Hence, t is fully normalized and not in the hyperfocal subgroup of F_t, while z^α is contained in the hyperfocal subgroup of $H^\alpha \leq C_{F}(z^\alpha)$ for every $\alpha \in \mathfrak{A}(\langle z \rangle)$. Thus, t and z are not F-conjugate.

\textbf{Lemma 6.3.} If Hypothesis 6.1 holds, then C is not subintrinsic in $\mathcal{C}(F)$.
Proof. Assume on the contrary that \(C \) is subintrinsic in \(\mathcal{C}(F) \). As argued in Remark 3.2, this means that \(z \in \mathcal{I}_F(H) \).

Assume first that \(t \notin Z(S) \). Then \(S_t < S \), so that \(S_t < N_S(S_t) \). Fix \(a \in N_S(S_t) - S_t \). Then \(t^a = tz \) and \(z^a = z \) by Lemma 6.2(c,e).

As \(z \in \mathcal{I}_F(H) \), we may pick \(a \in \mathfrak{A}(z) \) such that \(H^a \) is a component of \(C_F(z^a) \). Since \(z^a = z \), we may define \(\tilde{a} := a^\alpha \in C_S(z^a) \). Then \((H^a)^\tilde{a}\) is a component of \(C_F(z) \) on \((T^a)^\tilde{a} = (T^a)^\alpha\). However, if \((H^a)^\tilde{a} \neq H^a\), then since Sylow subgroups of distinct components commute, we would have \([((T^a)^\alpha, T^a)] = 1\) and thus \(T^a \leq C_{S_t}(T) \leq Q(z) \) by Lemma 6.2(b), and we would be forced to conclude that \(T \) is abelian. Since this is not the case, \(\pi \) normalizes \(T^a \), which implies that \(a \) normalizes \(T \). Hence, by (S4) in Definition 2.22, conjugation by \(a \) restricts to an automorphism of \(C \). As \(t \in F^f \) by Lemma 6.2(a), it follows from [Asc16, 9.1.6.3] that \(Q = C_{S_t}(C) \). Thus, \(a \) acts also on \(Q = C_{S_t}(C) \), so that \(t^a = t \). This contradicts the choice of \(a \).

We have shown that \(t \in Z(S) \). So Lemma 6.2(c) yields \(V := \Omega_1(Z(S)) = \Omega_1(Z(S_t)) = \langle t, z \rangle \), while Lemma 6.2(e) says that \(t \) is not \(F \)-conjugate to \(z \). Notice that \(\text{Aut}_F(V) \) is by the Sylow axiom of odd order, since \(S \) centralizes \(V \). As \(\text{Aut}(V) \cong S_3 \) and every element of \(\text{Aut}(V) \) of order 3 acts transitively on \(V^# \), it follows that \(\text{Aut}_F(V) = 1 \). If \(t \) is \(F \)-conjugate to an element of \(Z(S) \) under an \(F \)-morphism \(\alpha \), then by Lemma 2.2 \(\alpha \) can be assumed to be an \(F \)-automorphism of \(S \), which thus restricts to an element of \(\text{Aut}_F(V) \). This shows that \(\langle t \rangle \) is weakly closed in \(Z(S) \), contradicting Lemma 6.2(d).

We are now in the position to complete the proof of Theorem 1.

Proof of Theorem 7. If \(F \) is a counterexample to Theorem 1, then we may choose the notation such that Hypothesis 3.1 holds (cf. Remark 3.2). So by Theorem 3.3, Hypothesis 4.1 holds. Thus, Proposition 5.7 yields that \(Q \) is cyclic, so that Hypothesis 6.1 holds. However, now Lemma 6.3 yields a contradiction to the assumption that \(C \) is subintrinsic.

7. General Benson-Solomon components

In this section, we apply Walter’s Theorem for fusion systems [Asc17b, Theorem] to treat the general Benson-Solomon component problem under the assumption that all components in involution centralizers are on the list of currently known quasisimple 2-fusion systems, and we thus complete the proof of Theorem 2. We refer to Section 2.9 for more information on this class of fusion systems, as well as for the definition of the subclass Chev[large].

Throughout this section, let \(F \) be a saturated fusion system over a 2-group \(S \).

Lemma 7.1. Assume all members of \(\mathcal{C}(F) \) are known quasisimple 2-fusion systems, and fix a fully centralized involution \(z \) of \(F \). Then all members of \(\mathcal{C}(C_F(z)) \) are known.

Proof. Given a fully centralized involution \(t \) in \(C_F(z) \) and a component \(K \) of \(C_{C_F(z)}(t) \), it follows from [Asc17b, 1.3] that there is a component \(L \) of \(C_F(z) \) such that either \(K \) is a homomorphic image of \(L \), or \(L \) is \(t \)-invariant, \(t \) does not centralize \(L \), and \(K \in \text{Comp}(C_{L}(t)) \). In the former case, \(K \) is known, so assume the latter case. Then \(K \) is a component in the centralizer of some involution in an almost quasisimple extension \(L(t) \) of \(L \in \mathcal{C}(F) \). By assumption and Theorem 2.29 of [AO16], either \(L \) is a Benson-Solomon system, or \(L \) is tamely realized by a finite quasisimple group. If \(L \) is a quasisimple extension of \(F_{\text{Sol}}(q) \), then \(L = F_{\text{Sol}}(q) \) by a result of Linckelmann [HL18, Theorem 4.2].
Thus Lemma 2.36 and Proposition 2.42 yield that K is either the fusion system of $\mathrm{Spin}_r(q)$ (if t is inner) or a Benson-Solomon system (if t is outer). Hence, K is known in this case. On the other hand, if L is tamely realized by a finite quasisimple group L, then $L(t)$ is tamely realized by an extension $L(t)$ of L by Theorem 2.11. Hence, components in centralizers of involutions in $L(t)$ are known by Lemma 2.48 and so K is known by Lemma 2.49.

Lemma 7.2. If M is a saturated subsystem of F such that $O^2(M)$ is a component of F, then $\mathcal{C}(M) \subseteq \mathcal{C}(F)$.

Proof. Let M be a saturated subsystem of F over the subgroup $M \leq S$ such that $D := O^2(M)$ is a component of F. Write D for the Sylow subgroup of D. Fix $C \in \mathcal{C}(M)$ and $t \in \mathcal{I}_M(C)$, and choose notation so that $\langle t \rangle$ is fully M-normalized. Then by Lemma 2.15(a), C is a component of $C_M(t)$.

As D is a component of F, the normalizer $N_F(D)$ is defined in Asc16, Definition 2.2.1. By construction, this is a subsystem of F over $N_S(D)$. Moreover, by Asc16, Theorem 2.1.14, 2.1.15, 2.1.16, $N_F(D)$ is a saturated, D is normal in $N_F(D)$, and every saturated subsystem of F in which D is normal is contained in $N_F(D)$. In particular, $M \subseteq N_F(D)$. Observe that D is also normal in $E(F) \langle t \rangle$ and thus $E(F) \langle t \rangle \subseteq N_F(D)$. By Hen13, Theorem 1, $(D \langle t \rangle)_N(D)$ is the unique saturated subsystem of $N_F(D)$ over $D \langle t \rangle$ such that $O^2(Y) = O^2(D) = D$. Thus, $(D \langle t \rangle)_M = (D \langle t \rangle)_E \langle t \rangle$ and we will denote this subsystem by $D \langle t \rangle$. As a consequence, $C_{D \langle t \rangle} = C_{D \langle t \rangle}_{E(F) \langle t \rangle}$ and again we will denote this subsystem just by $C_{D \langle t \rangle}$.

As $\langle t \rangle$ is fully M-normalized, it follows from Lemma 2.6 (applied with M and D in place of F and E) that $\langle t \rangle$ is fully $D \langle t \rangle$-normalized and $C_{D \langle t \rangle}$ is a normal subsystem of $C_{M(t)}$. Recall that C is a component of $C_{M(t)}$ and write T for the Sylow of C. Observe that $C = O^2(C) \subseteq O^2(C_{M(t)}) \subseteq D$ and thus $T \leq C_{D(t)}$. By Asc11, 9.1.2, T is nonabelian and thus $[T, C_{D(t)}] \neq 1$. Hence, Asc11, 9.6 gives that C is a component of $C_{D(t)}$.

Let $\varphi \in \mathfrak{A}_{E(F) \langle t \rangle}(t)$ so that $t^{\varphi} \in (E(F) \langle t \rangle)^{\langle t \varphi \rangle}$. Note that $E(F) \langle t \rangle = E(F) \langle t^{\varphi} \rangle$. By Lemma 2.7 applied with $E(F) \langle t \rangle$ and D in place of F and E, we have $t^{\varphi} \in (D \langle t^{\varphi} \rangle)^{\langle t^{\varphi} \rangle}$, $C_{D(t^{\varphi})} = C_{D(t^{\varphi})}$, and $\varphi|_{C_{D(t^{\varphi})}}$ induces an isomorphism from $C_{D(t^{\varphi})}$ to $C_{D(t^{\varphi})}$. Thus C^φ is a component of $C_{D(t^{\varphi})}$.

By Lemma 2.6 applied with $E(F) \langle t \rangle$, D, and t^{φ} in place of F, E, and P, we have $C_{D(t^{\varphi})} \leq C_{E(F) \langle t^{\varphi} \rangle}(t^{\varphi})$. Thus C^φ is subnormal in $C_{E(F) \langle t^{\varphi} \rangle}(t^{\varphi})$ and thus a component of $C_{E(F) \langle t^{\varphi} \rangle}(t^{\varphi})$. As $t^{\varphi} \in (E(F) \langle t \rangle)^{\langle t \varphi \rangle}$, it follows from Lemma 2.6 applied with $E(F) \langle t^{\varphi} \rangle$ and $E(F)$ in place of F and E that $C_{E(F)}(t^{\varphi}) \leq C_{E(F) \langle t^{\varphi} \rangle}(t^{\varphi})$. Writing E for the Sylow subgroup of $E(F)$, we have $T^\varphi \leq C_{D(t^{\varphi})} \leq C_{E(t^{\varphi})}$. As T^φ is nonabelian, it follows thus from Asc11, 9.6 that C^φ is a component of $C_{E(F)}(t^{\varphi})$.

Let now $\alpha \in \mathfrak{A}_{E(F)}(t^{\varphi})$. By Lemma 2.7, $t^{\varphi\alpha}$ is fully $E(F) \langle t^{\varphi\alpha} \rangle$-centralized, $C_{E(F)}(t^{\varphi\alpha}) = C_{E(F)}(t^{\varphi\alpha})$ and $\alpha|_{C_{E(F)}(t^{\varphi\alpha})}$ induces an isomorphism from $C_{E(F)}(t^{\varphi\alpha})$ to $C_{E(F)}(t^{\varphi\alpha})$. So C^α is a component of $C_{E(F)}(t^{\varphi\alpha})$. By Lemma 2.6, $C_{E(F)}(t^{\varphi\alpha}) \leq C_{E(F)}(t^{\varphi\alpha})$ and thus C^φ is a component of $C_{E(F)}(t^{\varphi\alpha})$. In particular, $t^{\varphi\alpha} \in X(C^\varphi)$ and so $t \in X(C)$ by Asc16, (6.1.4). This implies $C \in \mathcal{C}(F)$ as required.

If $t \in S$ normalizes a component D of F, then notice that D is normal in $E(F) \langle t \rangle$ and thus we may form $D \langle t \rangle$ inside of $E(F) \langle t \rangle$. Moreover, if t is fully $D \langle t \rangle$-normalized, then $C_{D(t)} = C_{D(t)}$ is defined (cf. Definition 2.5). Similarly, if D is a component of F with $D \neq D^t$, then $D D^t$ is normal in $E(F) \langle t \rangle$ and thus we may form $D D^t \langle t \rangle$ in $E(F) \langle t \rangle$. 37
The next theorem is essentially a restatement of Theorem 2. For, if Theorem 7.3(2) holds, then it follows from [Asc11, 10.11.3] that \(C \) is diagonally embedded in \(DD^t \) with respect to \(t \). We prove Theorem 7.3 using Walter’s Theorem for fusion systems [Asc17b], whose proof in turn relies on Theorem 11.

Theorem 7.3. Let \(F \) be a saturated fusion system over the 2-group \(S \). Assume that all members of \(\mathcal{C}(F) \) are known and that some fixed member \(C \in \mathcal{C}(F) \) is isomorphic to \(F_{Sol}(q) \) for some odd \(q \). Then for each \(t \in \mathcal{I}(C) \), there exists a component \(D \) of \(F \) such that one of the following holds.

1. \(D = C \);
2. \(D \cong C, D^t \neq D, t \in (DD^t(t))^F \) and \(C = C_{DD^t(t)} ; \) or

3. \(D \cong F_{Sol}(q^2), t \notin D, t \in (D(t))^F \) and \(C = C_D(t) \).

The following Lemma will be needed in the proof of Theorem 7.3.

Lemma 7.4. Let \(C \in \mathcal{C}(F) \) be a subsystem over \(T \leq S \). Fix \(t \in \mathcal{I}(C) \) and let \(\gamma \in \text{Hom}_F((T, t), S) \). Fix \(E \) be a component of \(F \) such that one of the conditions (1), (2), or (3) in Theorem 7.3 holds, then there exists a component \(\hat{D} \) of \(F \) such that the same condition holds with \(t^\gamma, C^\gamma \) and \(\hat{D} \) placed in \(t, C \) and \(D \).

Proof. By Lemma 2.12(a), the claim is clear if (1) holds, so suppose (2) or (3) holds. Write \(S_0 \leq S \) for the Sylow subgroup of \(E(F) \) and \(D \) for the Sylow subgroup of \(D \). By [Asc16, 1.3.2], we have \(F = (E(F)S, N_F(S_0)) \). So it is sufficient to show the assertion when \(\gamma \) is a morphism in \(E(F)S \) or in \(N_F(S_0) \).

If \(\gamma \) is a morphism in \(E(F)S \), then by construction of the product, \(\gamma \) is the composition of a morphism in \(E(F)(t) \) and a morphism in \(F_S(S) \subseteq N_F(S_0) \). Thus, it is enough to show the claim if \(\gamma \) is a morphism in \(E(F)(t) \) or in \(N_F(S_0) \).

Suppose that (2) holds. Assume first that \(\gamma \) is a morphism in \(E(F)(t) \). Then \(S_0(t) = S_0(t^\gamma) \).

As \(S_0 \) normalizes every component of \(F \), the action of \(t^\gamma \) on the components of \(F \) coincides with the one of \(t \). So \(D^t = D^{t^\gamma} \). In particular, \(D \neq D^{t^\gamma} \) and \(DD^t = DD^{t^\gamma} \). Note that (2) implies in particular \(T = C_{DD^t}(t) \), so \(\gamma \) is defined on \(C_{DD^t}(t) \).

Then, Lemma 2.7 applied with \(E(F)(t) \) and \(DD^t \) in place of \(F \) and \(E \) gives that \(t^\gamma \) is fully normalized in \(DD^t(t^\gamma) = DD^{t^\gamma}(t^\gamma) \) and \(C = C_{DD^t}(t^\gamma) = C_{DD^{t^\gamma}}(t^\gamma) \). So (2) holds with \(t^\gamma \) and \(C^\gamma \) in place of \(t \) and \(C \).

If \(\gamma \) is a morphism in \(N_F(S_0) \). Then \(\gamma \) extends to \(\alpha \in \text{Hom}_F((S_0, t), S) \). So by Lemma 2.12(b), \(\hat{D} := D^{a} \) is a component of \(F \). Clearly, \(\hat{D} \cong D \cong C \cong C^\gamma \). Notice that \(\hat{D}^{t^\gamma} = (D^{a})^{t^\gamma} = (D^{t^\gamma})^{a} \). In particular, \(\hat{D}^{t^\gamma} \neq \hat{D} \) and \(C^{t^\gamma} = C^{a} \subseteq (D^{t^\gamma})^{a} = \hat{D}^{t^\gamma} \).

Moreover, \(\alpha \) induces an isomorphism from \(E(F)(t) \) to \(E(F)(t^\gamma) \) which takes \(t \) to \(t^\gamma \) and \(DD^t \) to \(DD^{t^\gamma} \). Thus, \(\alpha \) induces an isomorphism from \(DD^t(t) \) to \(DD^{t^\gamma}(t^\gamma) \). This implies that (2) holds with \(t^\gamma, C^\gamma \) and \(\hat{D} \) in place of \(t, C \) and \(D \).

Suppose now that (3) holds and assume again first that \(\gamma \) is a morphism in \(E(F)(t) \). As observed above, \(D \) is normal in \(E(F)(t) \). As \(t \notin D \), it follows that \(t^\gamma \notin D \). Note moreover that \(S_0(t) = S_0(t^\gamma) \).

In particular, \(as S_0(t) \) normalizes \(D \), we have \(D^{t^\gamma} = D \). As \(C = C_D(t) \) by assumption, we have \(C_D(t) = T \) and thus \(\gamma \in \text{Hom}_{E(F)(t)}((C_D(t), t), S_0(t)) \).

Hence, by Lemma 2.7 applied with \(E(F)(t) \) and \(D \) in place of \(F \) and \(E \), we get that \(C^\gamma = C_D(t)^{\gamma} = C_D(t) \). So the assertion holds in this case for \(\hat{D} = D \).

Assume now that \(\gamma \) is a morphism in \(N_F(S_0) \) and choose a morphism \(\alpha \in \text{Hom}_F(S_0(t), S) \) which extends \(\gamma \). Then \(\hat{D} := D^{a} \) is a component of \(F \) over \(\hat{D} := D^{a} \), and \(\alpha \) induces an isomorphism from \(E(F)(t) \) to \(E(F)(t^\gamma) \) which takes \(D \) to \(\hat{D} \) and \(t \) to \(t^\gamma \). Hence, \(t^\gamma \notin \hat{D} \) and \(\hat{D}^{t^\gamma} = \hat{D} \).

Moreover,
α induces also an isomorphism from $D(t) = (D(t))_{E(F)(t)}$ to $D(t') = (D(t'))_{E(F)(t')}$. As t is fully $D(t)$-normalized, it follows that $t' = t^\alpha$ is fully $D(t')$-normalized. Moreover, α induces an isomorphism from $C_{D(t)}(t)$ to $C_{D(t')}(t')$. Observe also that $C_D(t)^\alpha = C_{D(t)}(t')$. So α takes the unique normal subsystem of $C_{D(t)}(t)$ over $C_D(t)$ of p-power index to the unique normal subsystem of $C_{D(t')}(t')$ over $C_D(t')$ of p-power index. In other words, we have $C_D(t)^\alpha = C_D(t')$ and thus $C = C_D(t)^\alpha = C_D(t')$. So (2) holds with t', C' and \hat{D} in place of $t, C,$ and D. \hfill \Box

Proof of Theorem 7.3. Let F be a counterexample having a minimal number of morphisms. Fix $C \in \mathfrak{C}(F)$ and $t \in \mathcal{I}(C)$ such that $C \cong \mathcal{F}_{\mathcal{Sol}}(q)$ and none of the conclusions (1), (2), or (3) hold. Let T be the Sylow of C, and write $Z(T) = \langle z \rangle$. Set $\mathcal{H} = C = C_{\alpha}(z)$.

We may and do assume that $\langle z \rangle$ is fully F-centralized and that t is fully $F(z)$-centralized. This follows in the standard way by choosing $\beta \in \mathfrak{A}(z)$, choosing $\gamma \in \mathfrak{A}_{C_D(z)}(t^{\beta})$, setting $\varphi = \beta \gamma$, and replacing z by z^{φ}, t by t^φ, and C by C^{φ}. In this process, note that Lemma 2.15(b) shows that we still have $t^\varphi \in \mathcal{I}(C^\varphi)$. Also by Lemma 7.4 applied with φ^{-1}, if one of the conclusions (1)–(3) holds with respect to C^{φ} and t^φ, then one of the conclusions (1)–(3) holds with respect to C and t.

Fix $\alpha \in \mathfrak{A}(t)$. Then

(7.5) $z^\alpha \in C_F(t^\alpha)^f$ and the map $\alpha : C_{C_F(z)}(t) \to C_{C_F(t^\alpha)}(z^\alpha)$ is an isomorphism by [Asc10, 2.2]. Moreover, Lemma 2.15(a) yields

(7.6) C^α is a component of $C_F(t^\alpha)$.

If one of the conclusions (1)–(3) holds with (t^α, C^α) in place of (t, C), then it follows from Lemma 7.4 that one of the conclusions (1)–(3) holds for (t, C). As this would contradict our assumption, it follows that none of the conclusions (1)–(3) holds with (t^α, C^α) in place of (t, C).

Since neither conclusion (1) nor (2) holds with (t^α, C^α) in place of (t, C), it follows from [Asc17b, 1.3] and the fact that the Benson-Solomon systems have no proper quasisimple coverings [HL18, Theorem 4.2] that there is a unique t^α-invariant component D of F containing C^α such that $D \neq C^\alpha$ and $C^\alpha \in \text{Comp}(C_{D(t^\alpha)}(t^\alpha))$. In particular, $t^\alpha \in \mathcal{I}_{D(t^\alpha)}(C^\alpha)$. All members of $\mathfrak{C}(D(t^\alpha))$ are known by Lemma 7.2. Moreover, notice that D is the unique component of $D(t^\alpha)$. So if $D(t^\alpha)$ is not a counterexample, then conclusion (3) holds with (t^α, C^α) in place of (t, C) and, as argued above, this is not the case. Hence $D(t^\alpha)$ is a counterexample, and so $F = D(t^\alpha)$ by minimality of F. This implies that

(7.7) $F^* = O^2(F) = D$ is quasisimple.

It is possible at this point that $F = D$. We first prove that

(7.8) \mathcal{H} is a component of $C_{C_F(z)}(t)$.

Recall that $\langle z^\alpha \rangle$ is fully $C_F(t^\alpha)$-normalized by (7.5) and that C^α is subnormal in $C_F(t^\alpha)$ by (7.6). Fix a subnormal series $C^\alpha = F_0 \leq \cdots \leq F_n = C_F(t^\alpha)$ for C^α. Then $\langle z^\alpha \rangle$ is fully F_i-normalized for each i by Lemma 2.4. Also, $H^\alpha = C_{C_F(z^\alpha)}(z^\alpha) \leq C_{F_1}(z^\alpha) \leq \cdots \leq C_{F_n}(z^\alpha)$ is a subnormal series for H^α in $C_{C_F(t^\alpha)}(z^\alpha)$ by application of [Asc11, 8.23.2] and induction on n. Hence, H^α is a component of $C_{C_F(z)}(t)$ by the isomorphism in (7.3).

We next prove that

(7.9) there is $\mathcal{M} \in \mathfrak{C}(F)$ with $\mathcal{M} \in \text{Chev}[\text{large}]$ and $z \in \mathcal{I}(\mathcal{M})$.

39
Recall that \mathcal{H} is a component of $C_{\mathcal{F}(z)}(t)$ by (7.8). So by [Asc11 10.11.3], there exists a component \mathcal{M} of $C_{\mathcal{F}(z)}$ such that one of the following holds

(i) $\mathcal{M} = \mathcal{H}$; or

(ii) $\mathcal{M} \neq \mathcal{M}^t$ and \mathcal{H} is diagonally embedded in $\mathcal{M}\mathcal{M}^t$, so that \mathcal{H} is a homomorphic image of \mathcal{M}; or

(iii) t acts nontrivially on \mathcal{M} and $\mathcal{H} \in \text{Comp}(C_{\mathcal{M}(t)}(t))$.

If (i) holds then (7.9) is immediate. Assume (ii) holds. Since Spin$_7(q)$ has no proper 2-coverings [GLS98, Tables 6.1.2,6.1.3], neither does \mathcal{H} by [BCG+07 Corollary 6.4]. Thus, we have in case (ii) that $\mathcal{M} \cong \mathcal{H} \in \text{Chev}\{\text{large}\}$, and again (7.9) is satisfied. Lastly, assume (iii) holds. By (7.8), we have $t \in \mathcal{I}_{\mathcal{F}(z)}(\mathcal{H})$. Moreover, all members of $\mathcal{C}(C_{\mathcal{F}(z)})$ are known by Lemma 7.1. Thus, the hypotheses of Walter’s Theorem for fusion systems [Asc17b] are satisfied with $C_{\mathcal{F}(z)}$ and \mathcal{H} in place of \mathcal{F} and \mathcal{L}. So either $\mathcal{M} \in \text{Chev}\{\text{large}\}$ or $\mathcal{M} \cong C$ by that theorem. But \mathcal{H} contains z in its center. As $\mathcal{H} = O^2(H) \leq O^2(M(t)) = M \leq C_{\mathcal{F}(z)}$ and \mathcal{M} is quasisimple, we have that $z \in Z(M)$. Hence, the case $\mathcal{M} \cong C$ does not hold, so $\mathcal{M} \in \text{Chev}\{\text{large}\}$. This completes the proof of (7.9).

We may now complete the proof of the theorem. By (7.9) and assumption on $\mathcal{C}(F)$, Walter’s Theorem applies to \mathcal{F}. By that theorem and (7.7), either $D \in \text{Chev}\{\text{large}\}$ or D is isomorphic to a Benson-Solomon system. Assume the former holds. All members of $\text{Chev}\{\text{large}\}$ are tamely realized by some member of $\text{Chev}^*(p)$ for some odd prime p by [BMO16], so we may fix $D \in \text{Chev}^*(p)$ tamely realizing D. By Theorem 2.11 we may further fix a finite group G with Sylow 2-subgroup S such that $F^*(G) = D$ and $\mathcal{F} \cong F_S(G)$. As C^a is a component of $C_{\mathcal{F}(t^a)}$, we obtain from Lemmas 2.48 and 2.49 the contradiction that C is not exotic.

Therefore, D is isomorphic to a Benson-Solomon system. Assume first that $t^a \in \text{foc}(\mathcal{F})$. Then $\mathcal{F} = D$. In particular, $Z(S)$ is the only fully normalized subgroup of S of order 2 by Lemma 2.36. Hence, $Z(S) = (t^a)$ as (t^a) is fully \mathcal{F}-normalized. So $C_{\mathcal{F}(t^a)}$ is the 2-fusion system of Spin$_7(q')$ for some odd prime power q', which contradicts (7.6). Hence, $t^a \notin \text{foc}(\mathcal{F})$. Applying Proposition 2.42 we see that $D \cong F_{\text{Sol}}(q^2)$ and $C_D(t^a) = C$. Therefore, (3) holds after all with (t^a, C^a) in place of (t, C), and as we have seen this leads to a contradiction.

References

E-mail address: ellen.henke@abdn.ac.uk

Institute of Mathematics, University of Aberdeen, Fraser Noble Building, Aberdeen AB24 3UE

E-mail address: lynd@louisiana.edu

Department of Mathematics, University of Louisiana at Lafayette, Maxim Doucet Hall, Lafayette, LA 70504